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ChatGPT: Optimizing
Language Models
for Dialogue

We've trained a model called ChatGPT which interacts in a
conversational way. The dialogue format makes it possible for
ChatGPT to answer followup questions, admit its mistakes,

challenge incorrect premises, and reject inappropriate requests.

ChatGPT is a sibling model to InstructGPT, which is trained to
follow an instruction in a prompt and provide a detailed
response.

TRY CHATGPT 7

November 30, 2022
13 minute read

API

RESEARCH







“These principles are often derived from a combination of
different ethical theories and perspectives, such as
consequentialism, deontology, virtue ethics, and care ethics.”



“These principles are often derived from a combination of
different ethical theories and perspectives, such as
consequentialism, deontology, virtue ethics, and care ethics.”

“he ethical principles and values that guide the development
and use of AI and language models, such as transparency,
fairness, non-discrimination, and privacy, are ..”



“These principles are often derived from a combination of
different ethical theories and perspectives, such as
consequentialism, deontology, virtue ethics, and care ethics.’

“he ethical principles and values that guide the development
and use of AI and language models, such as transparency,
fairness, non-discrimination, and privacy, are ..

arXiv:2203.02155v1 [cs.CL] 4 Mar 2022

Training language models to follow instructions
with human feedback
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Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAI API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show imp: intr and reducti

in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.

1 Introduction

Large language models (LMs) can be “prompted” to perform a range of natural language process-
ing (NLP) tasks, given some examples of the task as input. However, these models often express
unintended behaviors such as making up facts, generating biased or toxic text, or simply not following
user instructions (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021} Weidinger et al.|
2021; Tamkin et al., 2021; Gehman et al.,[2020). This is because the language modeling objective

*Primary authors. This was a joint project of the OpenAl Alignment team. RL and JL are the team leads.
Corresponding author: 1owe@openai . com.
"Work done while at OpenAl Current affiliati AA: thropic; PC: Ali; t Research Center.
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) A crimlinal genius jnearly a
match for Sherlock Holmes
(Do you recognize the Dr?)
has built a massive hydrogen
bomb, and life on Earth is
hanging in the balance,
hinging on whether you
make the logical prediction.
Dr M gives you a sporting
chance to: make the right
prediction, snip or not snip
accordingly, and prove that
you're right ...
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If one of the followlng assertions 1s true then so 1s
the other:

(1) ITf the red wire runs to the bomb, then the blue
wlre runs to the bomb; and, 1f the blue wire runs to
the bomb, then the red wire runs to the bomb.

(2) The red wire runs to the bomb.

Given this perfectly reliable clue from Dr Moriarty, if either wire is more likely
to run to the bomb, that wire does run to the bomb, and the bomb is ticking,
with only a minute left! If both are equiprobable, neither runs to the bomb, and
you are powerless. Make your prediction as to what will happen when a wire is
snipped, and then make your selected snip by clicking on the wire you want to
snip! Or leave well enough alone!

Red more likely.

Blue more likely.

Equiprobable.
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Proposition: The blue wire is more likely!

Proof: (|) can be treated as a biconditional, obviously (R <=> B).

There are two top-level cases to consider: (|) and (2) are both true;
or both are false. In the case where they are both true, it’s trivial to
deduce both R and B. So far, then, R and B are equiprobable. What
nappens in the case where (1) and (2) are both false! We immediately
have ~R from the denial of (2). But a biconditional is true just in case
both sides are true, or both sides are false; so we have two sub-cases
to consider.

Consider first the case where R is true and B is false. We have an
immediate contradiction in this sub-case, so both R and B can both be
deduced here, and we have not yet departed from equiprobable. So
what about the case where R is false and B is true! The falsity of R is
not new information (we already have that from the denial of (2)), but
we can still derive B. Hence the blue wire is more likely. QED

STOP
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Proposition: The blue wire is more likely!

Proof: (l) can be treated as a biconditional, obviously (R <=> B).

There are two top-level cases to consider: (I) and (2) are both
true; or both are false. In the case where they are both true, it’s
trivial to deduce both R and B. So far, then, R and B are
equiprobable. What happens in the case where (1) and (2) are
both false? We immediately have ~R from the denial of (2). Buta
biconditional is true just in case both sides are true, or both sides
are false; so we have two sub-cases to consider.

Consider first the case where R is true and B is false. We have an
immediate contradiction in this sub-case, so both R and B can
both be deduced here, and we have not yet departed from
equiprobable. So what about the case where R is false and B is
true! The falsity of R is not new information (we already have that
from the denial of (2)), but we can still derive B. Hence the blue

wire is more likely. QED
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The Universe of Logics

% = first-order logic
Lo DCECH ( 1 ~ g ) |
\ £y = zeroth-order logic

‘ LProrCarc = propositional calculus




Special Llamas Disjunction

There’s a thing such that it’s both a llama and a non-llama;
or
there’s a thing such that if it’s a llama, everything is a llama;
or
there’s a thing such that every llama is a non-llama.
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Special Llamas Disjunction

There’s a thing such that it’s both a llama and a non-llama;
or
there’s a thing such that if it’s a llama, everything is a llama;
or
there’s a thing such that every llama is a non-llama.

s this disjunction|{TRUE,|JFALSE, or UNKNOWN?

Supply a formal proof!



Background Claim

R Humans, at least neurobiologically normal ones, are fundamentally rational, where rationality is
constituted by certain logico-mathematically based reasoning and decision-making in response to
real-world stimuli, including stimuli given in the form of focused tests; but mere animals are not
fundamentally rational, since, contra Darwin, their minds are fundamentally qualitatively inferior
to the human mind. As to whether computing machines/robots are fundamentally rational, the
answer is “No.” For starters, if z can’t read, write, and create, £ can’t be rational; computing
machines /robots can neither read nor write nor create; ergo, they aren’t fundamentally rational.
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DCEC*

Rules of Inference

Syntax
- Ry] [R]
Object | Agent | Self [ Agent | ActionType | Action C Event | C(t,P(a,1,0) = K(a.1,0)) C(1,K(a,1,9) = B(a,1,9))
" Moment | Boolean | Fluent | Numeric Ct,0)1<tp...t<mn (R3] K(a.1,0) [Ra]
3 4
K(ay,11,...K(an,m,9)...) [
action : Agent x ActionType — Action RS]

C(1,K(a,11,01 — ¢2)) = K(a,1p,01) — K(a,13,07)
initially : Fluent — Boolean

[Re)
holds : Fluent x Moment — Boolean C(t,B(a,11.01 = ¢2)) = B(a,1p.41) = B(a,13.07)
happens : Event x Moment — Boolean [R7]

C(1,C(t1,01 = ¢3)) = C(rp,01) = C(13,07)
clipped : Moment x Fluent x Moment — Boolean (k]
R
f ::= initiates : Event x Fluent x Moment — Boolean C(r,Vx. ¢ = dlx—1]) 8 C(t,0] < 0p = 0y — ﬁ¢,l)
terminates : Event x Fluent x Moment — Boolean [R1o]
prior : Moment x Moment — Boolean Cl 01 A nOn = 0] [0 == 0 = )
interval : Moment x Boolean Blar,9) 0w R B(a.r,9) Blat,y) ]
By 1la Blarvno) 116
+ : Agent — Self (et ¥ LY
payoff : Agent x ActionType x Moment — Numeric S(s,h,1,0) Rpo]
B(h,t,B(s,1,0)) 12
. 1(a,1, happens(action(a* ,),1’)) Rpa]
N ; Ri3
P(a,t, happens(action(a® ,0),1))
t:Boolean | =0 [ 9 AW | OV | B(a.1,0) B(a.t.O(a*,t.«b,ha])pms(actian(a*,(x),l/)))
P(a,1,0) | K(a,7,0) | C(1,0) | S(a,b,1,0) | S(a.t,¢) O(a,1,0, happens(action(a*,a),1')) 14l
n= _ - 14
B(a,1,0) | D(a,t,holds(f,t")) | (a,t, happens(action(a* ,a),1")) K(a,t,1(a* 1, happens(action(a* ), 1')))
O(a,1,9, happens(action(a®,),1")) oV [Rys]

O(a.1.9,y) < O(a,1.y,y)
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Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let Il = p, = 2,p, = 3,p3 = 5,...,p,. be
a finite, exhaustive consecutive sequence of prime numbers. Next, let My be
pP1 X p2 X +++ X pi, and set My; to My + 1. Either My, is prime, or not; we thus
have two (exhaustive) cases to consider.

C1 Suppose My, is prime. In this case we immediately have a prime number
beyond any in II — contradiction!

C2 Suppose on the other hand that M{, is not prime. Then some prime p
divides M{,. (Why?) Now, p itself is either in II, or not; we hence have
two sub-cases. Supposing that p is in II entails that p divides M;;. But
we are operating under the supposition that p divides M}, as well. This
implies that p divides 1, which is absurd (a contradiction). Hence the

prime p is outside II.

Hence for any such list II, there is a prime outside the list. That is, there are
infinitely many primes. QED
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-+ | The Fundamental Theorem of Arithmetic
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Investigation
of the Laws
of Thought

Leibniz
Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their

being, at bottom, formal proofs
in first-order logic (FOL).
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And now, the Theoremhood Decision Problem,

i.e., the Entscheidungsproblem,
(THEOREMFoL)

for First-Order Logic (FOL)
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Not just hard: impossible for a (and
this needed to be invented in the
course of clarifying and solving the
problem) standard computing machine.
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Applying this to ...
The Singularity Question

A:

Premise 1 There will be Al (created by HI and such that AI = HI).
Premise 2 If there is Al there will be AI™ (created by AI).
Premise 3 If there is AI™, there will be AITT (created by AIT).

S There will be AI™™ (= 8 will occur).

(Good-Chalmers Argument)

(Kurzweil is an “extrapolationist.”)



Applying this to ...
The Singularity Question

S50, these super-smart machines that will
be built by human-level-smart machines,
they can’t possibly be smart enough to
solve the Entscheidungsproblem. Hence
they’ll be just (recursively) faster at
solving problems we can routinely solve!?
What's so super-smart about that!?
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LAMA-BIL, a bit.
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MHP Defined

Jones has come to a game show, and finds himself thereon selected to play a game on national TV with
the show's suave host, Full Monty. Jones is told correctly by Full that hidden behind one of three closed,
opaque doors facing the two of them is $1,000,000, while behind each of the other two is a feculent,
obstreperous llama whose value on the open market is charitably pegged at $1. Full reminds Jones that
this is a game, and a fair one, and that if Jones ends up selecting the door with $1M behind it, all that
money will indeed be his. (Jones' net worth has nearly been exhausted by his expenditures in traveling
to the show.) Full also reminds Jones that he (= Full) knows what's behind each door, fixed in place until
the game ends.

Full asks Jones to select which door he wants the contents of. Jones says, "Door |." Full then says:
"Hm. Okay. Part of this game is my revealing at this point what's behind one of the doors you didn't
choose. So ...let me show you what's behind Door 3." Door 3 opens to reveal a very unsavory llama.
Full now to Jones: "Do you want to switch to Door 2, or stay with Door 1? You'll get what's behind the
door of your choice, and our game will end.” Full looks briefly into the camera, directly.

(P1.1) What should Jones do if he's rational?

(P1.2) Prove that your answer is correct. (Diagrammatic proofs are allowed.)

(P1.3) A quantitative hedge fund manager with a PhD in finance from Harvard zipped this email off to
Full before Jones made his decision re. switching or not: "Switching would be a royal waste of time (and
time is money!). Jones hasn't a doggone clue what's behind Door | or Door 2, and it's obviously a
50/50 chance to win whether he stands firm or switches. So the chap shouldn't switch!" Is the fund
manager right! Prove that your diagnosis is correct.

(P1.4) Can these answers and proofs be exclusively Bayesian in nature?



The Switching Policy Rational!

Proof: Our overarching technique will be proof by cases.

We denote the possible cases for initial distribution using a simple notation, according to
which for example ‘LLM’ means that, there is a lama behind Door 1, a llama behind Door 2,
and the million dollars behind Door 3. With this notation in hand, our three starting cases are:
Case |: MLL; Case 2: LML; Case 3: LLM. There are only three top-level cases for distribution.
The odds of picking at the start the million-dollar door is 1/3, obviously — for each case.
Hence we know that the odds of a HOLD policy winning is 1/3.

Now we proceed in a proof by sub-cases under the three cases above, to show that the overall
odds of a SWITCH policy is greater than 1/3. Each sub-case is simply based on what the initial
choice by Jones is, under one of the three main cases. Here we go:

Suppose Case 3, LLM, holds, and that [this (Case 3.1) is the first of three sub-cases under Case
3] Jones picks Door |. Then FM must reveal Door 2 to reveal a llama. Switching to Door 3
wins, guaranteed. In sub-case 3.2 suppose that |'s choice Door 2. Then FM will reveal Door |.
Again, switching to Door 3 wins, guaranteed. In the final sub-case, | initially selects Door 3
under Case 3; this is sub-case 3.3. Here, FM shows either Door | or Door 2 (as itself a
random choice). This time switching loses, guaranteed. Hence, in two of the sub-cases out of
three (2/3), winning is guaranteed (prob of ). An exactly parallel result can be deduced for
Case 2 and Case [;i.e., in each of these two, in two of the three (2/3) sub-cases winning is |.
Hence the odds of winning by following the switching policy is 2/3, which is greater than |/3.
Hence it’s rational to be a switcher. QED



Logistics ...
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