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We've trained a model called ChatGPT which interacts in a
conversational way. The dialogue format makes it possible for
ChatGPT to answer followup questions, admit its mistakes,

challenge incorrect premises, and reject inappropriate requests.

ChatGPT is a sibling model to InstructGPT, which is trained to
follow an instruction in a prompt and provide a detailed
response.
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Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAI API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are
preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.
Moreover, InstructGPT models show imp: intr and reducti

in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.

1 Introduction

Large language models (LMs) can be “prompted” to perform a range of natural language process-
ing (NLP) tasks, given some examples of the task as input. However, these models often express
unintended behaviors such as making up facts, generating biased or toxic text, or simply not following
user instructions (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021} Weidinger et al.|
2021; Tamkin et al., 2021; Gehman et al.,[2020). This is because the language modeling objective

*Primary authors. This was a joint project of the OpenAl Alignment team. RL and JL are the team leads.
Corresponding author: 1owe@openai . com.
"Work done while at OpenAl Current affiliati AA: thropic; PC: Ali; t Research Center.
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Two-faced Allanguage models learn
to hide deception

‘Sleeper agents’ seem benign during testing but behave differently once deployed. And
methods to stop them aren’t working.

By Matthew Hutson
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Researchers worry that bad actors could engineer open-source LLMs to make them

respond to subtle cues in a harmful way. Credit: Smail Aslanda/Anadolu

Just like people, artificial-intelligence (Al) systems can be deliberately deceptive. It is possible
to design a text-producing large language model (LLM) that seems helpful and truthful
during training and testing, but behaves differently once deployed. And according to a study
shared this monthon arXivl, attempts to detect and remove such two-faced behaviour are
often useless — and can even make the models better at hiding their true nature.
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ABSTRACT

Humans are capable of strategically deceptive behavior: behaving helpfully in
most situations, but then behaving very differently in order to pursue alternative
objectives when given the opportunity. If an Al system learned such a deceptive
strategy, could we detect it and remove it using current state-of-the-art safety
training techniques? To study this question, we construct proof-of-concept
examples of deceptive behavior in large language models (LLMs). For example,
we train models that write secure code when the prompt states that the year is
2023, but insert exploitable code when the stated year is 2024. We find that such
backdoor behavior can be made persistent, so that it is not removed by standard
safety training techniques, including supervised fine-tuning, reinforcement learning,
and adversarial training (eliciting unsafe behavior and then training to remove it).
The backdoor behavior is most persistent in the largest models and in models
trained to produce chain-of-thought reasoning about deceiving the training process,
with the persistence remaining even when the chain-of-thought is distilled away.
Furthermore, rather than removing backdoors, we find that adversarial training
can teach models to better recognize their backdoor triggers, effectively hiding
the unsafe behavior. Our results suggest that, once a model exhibits deceptive
behavior, standard techniques could fail to remove such deception and create a
false impression of safety.

1 INTRODUCTION

From political candidates to job-seekers, humans under selection pressure often try to gain
opportunities by hiding their true motivations. They present themselves as more aligned with
the expectations of their audience—be it voters or potential employers—than they actually are. In
Al development, both training and evaluation subject Al systems to similar selection pressures.
Consequently, some researchers have hypothesized that future Al systems might learn similarly
deceptive strategies:

* Core research contributor.
Author contributions detailed in Section 9. Authors conducted this work while at Anthropic except where noted.
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“What category of English sentences does logic focus on?”



The Formal Language

CHAPTER 2. PROPOSITIONAL CALCULUS

Syntax Formula Type Sample Representation

P,P,,P;,Q,Q,,... Atomic Formulas “Larry is lucky.” as L,

) Negation “Gary isn't lucky.” as -l

Q1A...AQp Conjunction “Both Larry and Carl are lucky.” asL; AL,
@Q1V...V@pn Disjunction “Either Billy is lucky or Alvinis.” as L, v L,
Q—Y Conditional (Implication) “If Ron is lucky, so is Frank.” as L, —L¢

Q— Y Biconditional (Coimplication)  “Tim is lucky ifand only if Kim is.” as L;«— Ly

Table 2.1: Syntax of the Propositional Calculus. Note that ¢, ¥, and ¢; stand for
arbitrary formulas.
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Exercise: Is this language Roger-decidable?! Prove it!
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Better Formal Language: Pure Predicate Calculus
(presented via formal grammar)
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Exercise: Is this language also Roger-decidable? Prove it!
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