Rebuilding the Foundations of Math via (the "Theory") ZFC; ZFC to Axiomatized Arithmetic (the "Theory" PA)

James Oswald \&
Selmer Bringsjord

Rensselaer AI \& Reasoning (RAIR)
Intro to Logic
3/I I/2024

Reviewing the situation

Types of Paradoxes

- Deductive Paradoxes - paradoxes arrived at via deducing a contradiction from a set of assumptions. (Russell's Paradox)
- Inductive Paradoxes - coming (e.g.The Lottery Paradox, The Raven Paradox, The St Petersburg Paradox)

Dear colleague,

For a year and a half I have been acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to find the time for the thorough study I intended to make of your work. I find myself in complete agreement with you in all essentials, particularly when you reject any psychological element \llbracket Moment \rrbracket in logic and when you place a high value upon an ideography [Begriffsschrift] for the foundations of mathematics and of formal logic, which, incidentally, can hardly be distinguished. With regard to many particular questions, I find in your work discussions, distinctions, and definitions that one seeks in vain in the works of other logicians. Especially so far as function is concerned (9 of your Begriffsschrift), I have been led on my own to views that are the same even in the details. There is just one point where I have encountered a difficulty. You state (p. $17 \llbracket \mathrm{p} .23$ above $]$) that a function, too, can act as the indeterminate element. This I formerly believed, but now this view seems doubtful to me because of the following contradiction. Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows. Therefore we must conclude that w is not a predicate. Likewise there is no class (as a totality) of those classes which, each taken as a totality, do not belong to themselves. From this I conclude that under certain circumstances a definable collection [【Menge】] does not form a totality.

I am on the point of finishing a book on the principles of mathematics and in it I should like to discuss your work very thoroughly. ${ }^{1}$ I already have your books or shall buy them soon, but I would be very grateful to you if you could send me reprints of your articles in various periodicals. In case this should be impossible, however, I will obtain them from a library.

The exact treatment of logic in fundamental questions, where symbols fail, has remained very much behind; in your works I find the best I know of our time, and thereforef 1 have permitted myself to express my deep respect to you. It is very regrettable that you have not come to publish the second volume of your Grundgesetze; I hope that this will still be done.

Very respectfully yours,

Bertrand Russell

The above contradiction, when expressed in Peano's ideography, reads as follows :

$$
w=\operatorname{cls} \cap x a\left(x \sim_{\varepsilon} x\right) . \supset: w \varepsilon w .=, w \sim_{\varepsilon} w
$$

Axiom V $\exists x \forall y[y \in x \leftrightarrow \phi(y)]$

For formulae Φ with a free variable y, there exists a set x such that iff y is a member of x then formula Φ holds.

Russell's Theorem

$$
\vdash \neg \exists x \forall y(y \in x \leftrightarrow y \notin y)
$$

NO, if we take $\boldsymbol{\Phi}$ to be the formula $\mathrm{y} \ddagger \mathrm{y}$ (y is not a member of itself), we are able to prove a contradiction!

You will have the honor of proving this contradiction in Hyperslate as homework...

HyperGraderTM Problems - HyperSlate My Submissions Leader Board
 Selmer.Bringsjord@gmail.com

FregTHEN2
KnightKnave_SmullyanKKPro blem1. 1

AthenCfromAthenBandBthen C

BiconditionallntroByChaining
BogusBiconditional
CheatersNeverPropser
Contrapositive_NYS_2
Disj_Syll
GreenCheeseMoon2
HypSyll
LarrylsSomehowSmart
Modus_Tollens
RussellsLetter2Frege
ThxForThePCOracle
Explosion
OnlyMediumOrLargeLlamas
GreenCheeseMoon1
Disj_Elim
kok13_28
KingAce2
kok_13_31
\square RussellsLetter2Frege

The challenge here is to prove that from Russell's instantiation of Frege's doomed Axiom V a contradiction can be promptly derived. The letter has of course been examined in some detail by S Bringsjord (in the Mar 162020 lecture in the 2020 lecture lineup); it, along with an astoundingly soft-spoken reply from Frege, can be found here. Put meta-logically, your task in the present problem is to build a proof that confirms this:

$$
\{\exists x \forall y((y \in x) \rightarrow(y \notin y))\} \vdash \zeta \wedge \neg \zeta .
$$

Make sure you understand that the given here is an instantiation of Frege's Axiom V; i.e. it's an instantiation of

$$
\exists x \forall y((y \in x) \rightarrow \phi(y))
$$

(The notation $\phi(y)$, recall, is the standard way in mathematical logic to say that y is free in ϕ.) Note: Your finished proof is allowed to make use the PC-provability oracle (but only that oracle).
(Now a brief remark on matters covered by in class by Bringsjord when second-order logic = \mathscr{L}_{2} arrives on the scene: Longer term, and certainly constituting evidence of Frege's capacity for ingenius, intricate deduction, it has recently been realized that while Frege himself relied on Axiom V to obtain what is known as Hume's Principle (= HP), this reliance is avoidable. That from just HP we can deduce all of Peano Arithmetic (PA) (!) is a result Frege can be credited with showing; the result is known today as Frege's Theorem (= FT). Following the link just given will reward the reader with an understanding of HP, and how how to obtain PA from it.)

Deadline 22 Apr 2020 23:59:00 EST

Solve

The Foundation Crumbles

$$
\text { Axiom V } \exists x \forall y[y \in x \leftrightarrow \phi(y)]
$$

a formula of arbitrary size in which the variable y is free; this formula ascribes a property to y

The Foundation Crumbles

The Rest of Math, Engineering, etc.

$$
\text { Axiom V } \exists x \forall y[y \in x \leftrightarrow \phi(y)]
$$

a formula of arbitrary size in which the variable y is free; this formula ascribes a property to y

It's not just Russell'sParadox that destroys naïve set theory:

Richard's Paradox ...

| | Definition of Richard's $N:$ |
| :--- | :--- | :--- |
| Doesn't define | |
| a real number. | "The real number whose whole part |
| ab | is zero, and whose n-th decimal is P |

Proof: N is defined by a finite string taken from the English alphabet, so N is in the sequence E. But on the other hand, by definition of N, for every m, N differs from the m-th element of E in at least one decimal place; so N is not any element of E. Contradiction! QED

The Foundation Rebuilt

So what are the axioms in ZFC?

Axiom Schema of Separation (SEP)

$$
\begin{gathered}
\text { SEP } \\
\forall x_{1} \ldots \forall x_{k} \forall x \exists y \forall z\left[z \in y \leftrightarrow\left(z \in x \wedge \phi\left(z, x_{1}, \ldots, x_{k}\right)\right)\right]
\end{gathered}
$$

where x and y are distinct, and are both distinct from z and the x_{i}; and, as usual for us now, ϕ expresses a property using \in.
"Given beforehand some set x and property \mathscr{P} captured by a formula ϕ that uses \in for its relation, the set y composed of $\{z \in x: \mathscr{P}(z)\}$ exists."

How does this neutralize Russell's letter to Frege?

How does this neutralize Russell's letter to Frege?

"Given beforehand some set x and property \mathscr{P} captured by a formula ϕ that uses \in for its relation, the set y composed of $\{z \in x: \mathscr{P}(z)\}$ exists."

- This is a much stronger statement than axiom V !

Russell's paradox can be rephrased as saying the existence of the set of all sets leads to a contradiction.

Axiom V implies the existence of the set of all sets. Axiom V leads to a contradiction.

SEP only allows us to define new sets in terms of pre-existing sets, thus avoiding the existence of the set of all sets.

As an exercise:Try using $z \notin z$ for $P(z)$

Formal Natural-

Number Arithmetic ...

Define the existence of natural numbers and their relationships to each other

A1 $\forall x(0 \neq s(x))$
A2 $\forall x \forall y(s(x)=s(y) \rightarrow x=y)$
A3 $\forall x(x \neq 0 \rightarrow \exists y(x=s(y))$
Defines addition on natural numbers
. A4 $\forall x(x+0=x)$
A5 $\quad \forall x \forall y(x+s(y)=s(x+y))$
Defines multiplication on natural numbers

$$
\begin{array}{ll}
\text { A } 6 & \forall x(x \times 0=0) \\
\text { A7 } & \forall x \forall y(x \times s(y)=(x \times y)+x)
\end{array}
$$

Notation in the Q Axioms: Quantification

The "Domain of discourse" in Q is the natural numbers.
$0, I, 2,3,4 \ldots \ldots$.

This means quantifiers range exclusively over them
" $\forall x, \ldots$. reads as:
"For any number x ..."
"For all numbers..."
" $\exists x, \ldots$ " reads as:
"There exists a number x such that ..."
"There is a number such that ..."

Notation in the Q Axioms: Successors

Robinson arithmetic defines the natural numbers in terms of their successors, denoted by the successor function s.
s takes a number x and returns the next number $(x+l)$
Thus in robinson arithmetic the natural numbers are written solely in terms of 0 and successors of 0 :
$0=0$
I =s(0)
$2=s(s(0))$
$3=s(s(s(0)))$
$4=s(s(s(s))))$
This successor notion allows for a compact axiomatization of the natural numbers.

$$
\text { A1 } \forall x(0 \neq s(x))
$$

- 0 is not the successor of any natural number
- All numbers' successors are not equal to 0 .

Natural Numbers Numbers start at 0!

$$
\text { A2 } \forall x \forall y(s(x)=s(y) \rightarrow x=y)
$$

- For any two numbers, if their successors are equal, than they are equal.

Simple Example: $7=7$ thus $6=6$ thus $5=5 \ldots$
Why do we care, can't we just use Equality-Intro? No! This allows us to make more complex statements...
imagine we have a statement containing free variables " $s(s(p))=s(q)$ ", from this we could derive " $s(p)=q$ ", Which we couldn't do with raw equality intro.

$$
\text { A3 } \forall x(x \neq 0 \rightarrow \exists y(x=s(y))
$$

- For all numbers x , if x does not equal zero, then there exists another number y such that x is the successor of y.

In simpler terms...

- For any number that is not zero, there exists some number that comes before it.

Yes! If $x=1, y=0 ; x=2, y=1$, etc etc

We will prove a better form of A 3 as an exercise from this version...

The Addition Axioms

$$
\text { A4 } \forall x(x+0=x)
$$

Anything plus zero is itself.

$$
\text { A5 } \quad \forall x \forall y(x+s(y)=s(x+y))
$$

Any x plus the successor of y is the successor of x plus y
In other words...

$$
x+(y+1)=(x+y)+1
$$

Interlude:Axioms and Meaning

What do we mean when you say the axioms define addition?
A common confusion:"I see a + sign inside the axioms! Therefore, addition must be defined before the axioms, and you are just writing obvious properties about it!"

$$
\begin{array}{ll}
\text { A4 } & \forall x(x+0=x) \\
\text { A5 } & \forall x \forall y(x+s(y)=s(x+y))
\end{array}
$$

" + " in this context is just a symbol denoting a function of two numbers, we could just as well write " $x+y$ " as $a(x, y)$.

By defining properties of how the symbol may be used in reasoning we are constricting the symbol + to behave as addition, imbuing it with the intuitive "meaning" of addition.

$$
\begin{array}{ll}
\text { A6 } & \forall x(x \times 0=0) \\
\text { A7 } & \forall x \forall y(x \times s(y)=(x \times y)+x)
\end{array}
$$

Defining multiplication:
Anything times 0 is 0 .

Any number x times the successor of y is x times y plus x
I.E
$a(b+I)=a b+a$

Open Formulae?

We've already seen it in our coverage of ZFC.

$$
\exists y[s(s(0)) \times y=s(s(s(s(0))))]
$$

This says what?
That 2 multiplied by some number yields 4. But this is very specific: the successor of the successor of zero is specifically 2.
Here then is the general case with an "open" wff:

$$
\exists y[s(s(0)) \times y=x]
$$

This open wff $\phi(x)$ expresses the arithmetic property 'even.'

PA (Peano Arithmetic)

$$
\begin{array}{ll}
\text { A1 } & \forall x(0 \neq s(x)) \\
\text { A2 } & \forall x \forall y(s(x)=s(y) \rightarrow x=y) \\
\text { A3 } & \forall x(x \neq 0 \rightarrow \exists y(x=s(y)) \\
\text { A4 } & \forall x(x+0=x) \\
\text { A5 } & \forall x \forall y(x+s(y)=s(x+y)) \\
\text { A6 } & \forall x(x \times 0=0) \\
\text { A7 } & \forall x \forall y(x \times s(y)=(x \times y)+x)
\end{array}
$$

And, every sentence that is the universal closure of an instance of

$$
([\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x \phi(x))
$$

where $\phi(x)$ is open wff with variable x, and perhaps others, free.

What is this large scary formula?

$$
([\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x \phi(x))
$$

Axiom schema of induction!
Gives us a very powerful tool for proving statements about all natural numbers.

You can say something is true about all natural number if you can first show that it is true for 0 and that it being true for an arbitrary number n implies it is true for $\mathrm{n}+\mathrm{l}$.

Domino Analogy for Induction

$$
([\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x \phi(x))
$$

Let $\phi(x)$ be the statement:"The nth domino has been knocked over"

If the first domino is knocked over
$\phi(0)$
and for all dominos, each one will knock over its successor

$$
\forall x(\phi(x) \rightarrow \phi(s(x))
$$

then all dominos have been knocked over
$\forall x \phi(x)$

Example Proof by Induction

$$
\forall n: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

As a "forall natural numbers" statement, we can try using the induction schema to prove it!

Let $\phi(x)=\sum_{i=0}^{x} i=\frac{x(x+1)}{2}$.

We must first prove the first domino falls, this is called the base case, i.e. $\phi(0)$.

$$
\sum_{i=0}^{0} i=\frac{0(0+1)}{2} \rightarrow 0=0
$$

We must now prove that if the statement is true for one number it will be true for the next number: $\forall x: \phi(x) \rightarrow \phi(x+1)$. This is called the inductive step.

We can prove $\forall x: \phi(x) \rightarrow \phi(x+1)$ by proving $\phi(x) \rightarrow \phi(x+1)$ for this arbitrary x and using \forall introduction. We will use a direct proof for $\phi(x) \rightarrow \phi(x+1)$, proving $\phi(x+1)$ using $\phi(x)$ as an assumption. $\phi(x)$ is called the "induction hypothesis".

$$
\begin{aligned}
\sum_{i=0}^{x+1} i & =\frac{(x+1)((x+1)+1)}{2} \\
\sum_{i=0}^{x} i+x+1 & =\frac{(x+1)((x+1)+1)}{2} \\
\frac{x(x+1)}{2}+x+1 & =\frac{(x+1)((x+1)+1)}{2}
\end{aligned} \quad \text { by } \phi(x)
$$

Brush up on your highschool arithmetic by finishing the equivalence proof...

$$
([\phi(0) \wedge \forall x(\phi(x) \rightarrow \phi(s(x))] \rightarrow \forall x \phi(x))
$$

We have $\phi(0)$ and $\forall x: \phi(x) \rightarrow \phi(x+1)$ therefore, by induction (the induction axiom) $\phi(n)$ holds for all n.

QED

Pop Quiz \#1

Pull out a piece of paper and write down if the following formulae are open or closed. If they are open, list the unbound variable(s).
I) $\exists y[s(s(0)) \times y=x]$
2) $s(s(0))+s(0)=s(s(s(0)))$
3) $\quad \exists y[s(s(0)) \times y=s(s(s(s(0))))]$
4) $s(a)=s(s(0))$
5) $\quad \forall x: x=0 \vee(\exists y: x=s(y))$
6) $\quad \sum_{i=0}^{x+1} i=\frac{(x+1)((x+1)+1)}{2}$

Pop Quiz \#2

Create an FOL workspace in hyperslate named 3I Ipop2. Using A3 we have provided as a given:

$$
\text { A3 } \forall x(x \neq 0 \rightarrow \exists y(x=s(y))
$$

Prove that a natural number is either 0 or the successor of another natural number. No oracles.

$$
\forall x: x=0 \vee(\exists y: x=s(y))
$$

(This is an alternative formulation of axiom 3)
If you finish early, prove the other direction. Use the previous goal as an assumption and derive A3.

Node 1. Computed in 15 (ms), size 157

Pop Quiz \#3: Basic Addition

Use A4 and A5 to prove I+2 = 3. Do this in a new FOL workspace named 31Ipop3

Node 26. Computed in 22
(ms), size 157

Slutten

(Norwegian for "End")

