Propositional Calculus lll:
Reductio ad Absurdum

(negation intro & negation elimination in HS®)

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

Intro to Formal Logic (& Al)
1/30/2025

RA/lI R

Rensselaer Al a_;,\d Reasoning Lab



(Confessedly Redundant)
Logistics ...



The Starting Code to Purchase in Bookstore

Your code for starting the registration process is:

To access HyperGrader, HyperSlate, the license agreement,
and to obtain the textbook LAMA-BDLA, go to::

https://rpi.logicamodernapproach.com




The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, No
return. Remember
from first class, any
reservations, opt
To access HyperGrader, HyperSlate, the license agreement, fOI” “Stanfo rd”

and to obtain the textbook LAMA-BDLA, go to:: p aradi gm’ Wlth |tS

https://rpi.logicamodernapproach.com software instead of
LAMA® paradigm!

Your code for starting the registration process is:




The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, No
return. Remember
from first class, any
reservations, opt
To access HyperGrader, HyperSlate, the license agreement, fOI” “Stanfo rd”

and to obtain the textbook LAMA-BDLA, go to:: p aradi gm’ Wlth |tS

https://rpi.logicamodernapproach.com software instead of
LAMA® paradigm!

Your code for starting the registration process is:

Ihe emall address you enter Is case-sensitive!




The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, No
return. Remember
from first class, any
reservations, opt
To access HyperGrader, HyperSlate, the license agreement, fOI” “Stanfo rd”

and to obtain the textbook LAMA-BDLA, go to:: p aradi gm’ Wlth |tS

https://rpi.logicamodernapproach.com software instead of
LAMA® paradigm!

Your code for starting the registration process is:

Ihe emall address you enter Is case-sensitive!

Your OS5 and browser must be fully up-to-date; Chrome
s the best choice, browser-wise (though | use Safar).




The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, No
return. Remember
from first class, any
reservations, opt
To access HyperGrader, HyperSlate, the license agreement, fOI” “Stanfo rd”

and to obtain the textbook LAMA-BDLA, go to:: p aradi gm’ Wlth |tS

https://rpi.logicamodernapproach.com software instead of
LAMA® paradigm!

Your code for starting the registration process is:

Ihe emall address you enter Is case-sensitive!

Your OS5 and browser must be fully up-to-date; Chrome
s the best choice, browser-wise (though | use Safar).

Watch that the link emailed to you doesn't end up being classified as spam.




The Starting Code Purchased in Bookstore Should
By Now’ve Been/Soon Be Used to Register & Subsequently Sign In

First prop. calc. (Exercise) Problem:
switching_conjuncts_fine

Your code for starting the registration process is:

To access HyperGrader, HyperSlate, the license agreement,
and to obtain the textbook LAMA-BDLA, go to::

https://rpi.logicamodernapproach.com




The Starting Code Purchased in Bookstore Should
By Now’ve Been/Soon Be Used to Register & Subsequently Sign In

First prop. calc. (Exercise) Problem:
switching_conjuncts_fine

Second prop. calc. (Exercise) Problem:
switching_disjuncts_fine

Your code for starting the registration process is:

To access HyperGrader, HyperSlate, the license agreement,
and to obtain the textbook LAMA-BDLA, go to::

https://rpi.logicamodernapproach.com




E-Housekeeping Pts, Redux



E-Housekeeping Pts, Redux

® Must input your RIN. (This is your ID at
your university.)



E-Housekeeping Pts, Redux

® Must input your RIN. (This is your ID at
your university.)

® Make sure OS fully up-to-date.



E-Housekeeping Pts, Redux

® Must input your RIN. (This is your ID at
your university.)

® Make sure OS fully up-to-date.

® Make sure browser fully up-to-date.



E-Housekeeping Pts, Redux

® Must input your RIN. (This is your ID at
your university.)

® Make sure OS fully up-to-date.
® Make sure browser fully up-to-date.

® Chrome best (but | use Safari :) ).



E-Housekeeping Pts, Redux

® Must input your RIN. (This is your ID at
your university.)

® Make sure OS fully up-to-date.
® Make sure browser fully up-to-date.
® Chrome best (but | use Safari :) ).

® Always work in the same browser window
with multiple tabs; must do this with email
and HyperGrader® & HyperSlate®.



Logic-and-Al in the news



Apropos of Selmer’s Claim re. Commodification

TECH Following

Silicon Valley Is Raving About a
Made-in-China AI Model

DeepSeek is called ‘amazing and impressive’
despite working with less-advanced chips

A chatbot app developed by the Chinese Al company DeepSeek,
(PHOTO: RAFFAELE HUANG/WSJ)

By Raffaele Huang

Updated Jan 26,2025 12:00am.ET

Listen to this article
7 minutes

SINGAPORE—A Chinese artificial-intelligence
company has Silicon Valley marveling at how its

programmers nearly matched American rivals

despite using inferior chips.
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Logically speaking, what’s innate in you, &
what should be “innate” in a cognitive robot!?

This: 1 &3 + 1 u&L5 + art dinfaillibilité




PERI.2 has innate socio-multi-modal &5 capacity.
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N — "Pick up a sphere with a color property
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Some trophies in HG:HS ...



Reductio ...



"Reductio ad absurdum, which tuclid loved so
much, Is one of a mathematician’s finest weapons.
[t Is a far finer gambit than any chess gambit: a
chess player may offer the sacrifice of a pawn or
even a plece, but a mathematician offers the game.”

—G. H. Hardy



A Greek-shocking Example ...
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What are rational numbers!?
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Prove that:

\/2 s irrational



(high-school textbook)

Suppose V2 is rational. That means it can be written
as the ratio of two integers p and ¢

v2=" (1)

where we may assume that p and ¢ have no common
factors. (If there are any common factors we cancel
them in the numerator and denominator.) Squaring in
(1) on both sides gives

P
2= 7 (2)
which implies
P =27 (3)

Thus p? is even. The only way this can be true is that
p itself is even. But then p? is actually divisible by 4.
Hence ¢? and therefore ¢ must be even. So p and ¢ are
both even which is a contradiction to our assumption
that they have no common factors. The square root of
2 cannot be rational!
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N
Qt+ Z* < R*
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And now, what are prime numbers?

A number that can be divided by
only two numbers, one and itself.

e Must be a whole number.

e Example: 2,3,5,7......



And recall: Euclidean “Magic”

Theorem: There are infinitely many primes.

Proof: We take an indirect route. Let Il = p, = 2,p, = 3,p3 = 5,...,p,. be
a finite, exhaustive consecutive sequence of prime numbers. Next, let My be
p1 X P2 X +++ X pi, and set M}, to My + 1. Either M, is prime, or not; we thus
have two (exhaustive) cases to consider.

C1 Suppose M, is prime. In this case we immediately have a prime number
beyond any in II — contradiction!

C2 Suppose on the other hand that M{, is not prime. Then some prime p
divides Mj,. (Why?) Now, p itself is either in II, or not; we hence have
two sub-cases. Supposing that p is in II entails that p divides M;. But
we are operating under the supposition that p divides M}, as well. This
implies that p divides 1, which is absurd (a contradiction). Hence the

prime p is outside II.

Hence for any such list II, there is a prime outside the list. That is, there are
infinitely many primes. QED
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And recall: Euclidean “Magic”

Notice that this proof uses two applications of
indirect proof, and one application of proof by cases.

(What is proof by cases in HyperSlate®?)

Study it word by word until you endorse it with your very soul —
and consider variants on this theorem as conjectures that you
yourself can attempt to settle!
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absurdum = reductio in high school?



Are we supposed to understand
indirect proof = proof by
contradiction = reductio ad
absurdum = reductio in high school?

Affirmative.



From Algebra 2 in High School ...

(Pearson Common-Core Compliant Textbook)



A proof involving indirect reasoning is an indirect proof. Often in an indirect proof, a
statement and its negation are the only possibilities. When you see that one of these
possibilities leads to a conclusion that contradicts a fact you know to be true, you can
eliminate that possibility. For this reason, indirect proof is sometimes called proof

by contradiction.

TAKE NOTE Key Concept

Writing an Indirect Proof

Step 1 State as a temporary assumption the opposite (negation) of what you

want to prove.

Step 2 Show that this temporary assumption leads to a contradiction.

Step 3 Conclude that the temporary assumption must be false and that what
you want to prove must be true.

Lesson 5-5 Indirect Proof

v 60% )
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SHOW SOLUTION

GOTIT?

Lesson 5-5 Indirect Proof

4:55 PM

Problem 3 Writing an Indirect Proof

Proof

Given: AABC is scalene.

Prove: /A, /B, and ZC all have different measures.

THINK

Assume temporarily the
opposite of what you want
to prove.

Show that this assumption
leads to a contradiction.

Conclude that the temporary
assumption must be false and
that what you want to prove
must be true.

WRITE

Assume temporarily that two angles of
AABC have the same measure. Assume
that m£A = m4B.

By the Converse of the Isosceles Triangle
Theorem, the sides opposite ~ZAand 2B

are congruent. This contradicts the given

information that AABC is scalene.

The assumption that two angles of AABC
have the same measure must be false.
Therefore, ZA, 2B, and 2 C all have
different measures.

7 59% @ )
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different measures.

(A very

important
paper.)
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Interlude:

HyperSlate® & High School Geometry:
A Glimpse Ahead ...



Geometry Reduced to Formal Logic

SECTION 3.3

Proving
Congruent
Triangles

« .. mathematics may be defined as the
subject in which we never know what
| weare ta“dng about, nor whether what

we are saging is true.”

— Bertrand Russell; Recent Work on the Principles of
Mathematics, published in International Monthly, vol. 4

Section 3.3 Congruent Triangles

Do you have one of those friends who always doubts
everything that you say? One of those people who
always says, “Nuh-uh! No way!” (The person may
even believe you, but your statement is so amazingly
shocking that they can’t believe that it could be
true.) They can’t believe your statement until
they've seen it from a credible source or heard it
from enough people.

Well, thank that person. Knowing things with
certainty is a rare, rare occurrence.

16¢




Geometry Reduced to Formal Logic

SEC]

Sect}

Wait, you mean the
internet isn’t always true?
Cats can’t really talk?

Section 3.3 Congruent Triangles

It’s getting harder and harder to determine what is true. People can manipulate pictures or
sounds so well that it’s near impossible to believe anything.

So if we can’t be 100% certain by using physical objects, the only way to prove a fact with
certainty is with pure logic. A proof is the logical structure of making an argument with
clearly stated facts, and making logical conclusions with supporting reasons. If other people
can understand your proof and agree that it is logically correct, then they can agree that the
fact that you are stating must be true. This is the purpose of proof within mathematics:
making a clear logical argument so that others can understand and agree with your claim.

A proof is different from a definition. A definition is closer to just naming something. We
can define a dog: a highly variable carnivorous domesticated mammal of the genus Canis
(C. familiaris) closely related to the common wolf (Canis lupus). This is not proving what a
dog is.

In geometry, we can define objects as well.

Definition: Vertical Angles are a pair of opposite angles formed by two intersecting lines.

<1and .3 are vertical angles.
22
. 21 43
<2 and .4 are also vertical angles. 24

Suppose I make the statement, “If two angles are vertical angles, then they are congruent.”
This is making a claim about vertical angles. Someone may or may not agree with this
claim. I would have to provide a proof to convince them that this statement is true.

16¢




Geometry Reduced to Formal Logic

SEC]

Sect}

Se

Definitions (Axioms’ ‘Postulates

§ 70

Theorems \

N

Theorems

Theorems
ad infinitum)

Also bnown as the

“Well, duh” theorom

Section 3.3 Congruent Triangles

One possible proof would be as follows:

<ABD and .CBE are straight angles. We agreed that this can
be assumed. Straight angles are equal to 180° by definition. A C
(ABE + :ABC = LCBE,
<ABE + :ABC = 180°. B
By subtraction, -ABE = 180° — ~ABC.

Since

Similarly, -ABC + .CBD = 180°,
so :CBD =180° - ABC.

Both ABE and -CBD equal 180° — -ABC, so they are equal in measure and therefore

congruent.

I hope that anyone could read this explanation and agree with each of the sentences and the
flow of logic. This would prove the statement, “If two angles are vertical angles, they are
Once a statement has been proved (and generally agreed as true by the
mathematical community), it can be named a theorem.

congruent.”

Theorem: Iftwo angles are vertical angles, then they are congruent.

Vert. .8 > =

Theorems can be used with properties, axioms, postulates, and definitions to prove other
statements. And then those theorems can be used to prove other statements. And so on,
and so on, and so on...

Two common sense properties:

Reflexive Property: Any object is congruent to itself.

Transitive Property: If 2 objects are congruent to the same object, then
they are congruent to each other.

16€




Geometry Reduced to Formal Logic

SEC

All right! Let’s prove some triangles congruent!!
Example:

Given: HO = OM
OE bisects -HOM

Prove: AHOE = AMOE and name the transformation

PROOF: We know HO = OM , so we have one pair of sides

congruent in each triangle. Because OF bisects -HOM,

.HOE= -MOE because if an angle is bisected, it is divided into 2 =

angles. This is a pair of angles congruent in each triangle. Finally,

OE = OE by the reflexive property giving another side in each
triangle. By the SAS= theorem, AHOE = AMOE.

>

The transformation needed is a reflection over OE.

I methodically showed that each triangle had the three parts necessary to use the SAS =
theorem. Completing a proof with this paragraph format is like writing a conversation. I'm
just thinking about how I would explain it to a friend, and each statement that I am making
about the parts in each triangle needs some sort of explanation to back up why they are
congruent.

Sect}

Se

Sel

Section 3.3 Congruent Triangles 167




Geometry Reduced to Formal Logic

SEC
Another form of a proof is a two-column proof. It gives a little more structure than a
i conversation.
Example: S T
Given: .T = /N, Gisthe midpt. of NT G
Prove: ASGN = AIGT and name the transformation N
\
I
nfi PROOF: Statements Reasons
< C
(A) 1) .T=_.N 1) Given

/ ’ . 7 B

Note to self: I'm going to put an1 2) Gisthemidpt. of NT  2)(Given

“A” or “S” whenever I get a part o

in each triangle congruent. (S} 3) GN = 6T 3 @
It'll help me know when I've got g
. (A)  4) .SGN = -I6T 4) If two angles are vertical angles, then
my three pieces, and help
. ] they are congruent. (Vert . s — =)
determine what method I'm
using. 5) ASGN = AlGT 5) E
ol S / st aratat
The transformation needed is a rotation of 180° about pt. ¢
In this format, a proof is made up of statements and reasons. Each step is clearly thought
out and explained why it is true.
The statements talk specifically about this problem.
Sec T 'fhe reasons talk genera‘lly using conc’l,itional sentences,
) . If I know A, then B logically follows.
Se you must establish the hypothesis
o A is true first (i.e. in a previous In order to prove congruent triangles, somewhere in my statements I needed to say three
step). parts of this triangle are congruent to these three parts of the other triangle. Then I could
Sect} determine which method to use for congruent triangles.
Section 3.3 Congruent Triangles 16¢




Geometry Reduced to Formal Logic

SEC
i . .
Finally, a last example using a flow proof.
Example:
. o P
Given: PN 1L NA,EB LB
\ -
nee PA = ER,
tal
N (A = :ADR, R = .ADR N S A
’N Prove: APAN = AERB and name the transformation
ote B R
“A”o PROOF:
n =
BN | NAER | RPll £LPNA and ZEBR S _ -
It h PN 1L NA, ER L BRI e gy = ZPNA = ZEBR (2)
m %
D_ = oD =
et FAL s ER APAN =AERB (&)
_ /
@ - LA=LADR, | oo
ZR = ZADR
Reasons: 1) L lines form rt Ls; 2) If 2 Zs are rt, they are = ;
3) If 2 Ls are = to the same Z, they are = ; 4) AAS =
The transformation needed is a translation of length PE (or NIB).
Sect
To usg s % 55 0 3 :
Se — You can see how a flow proof is similar to a 2-column proof, it’s just not written in 2-
Zlis i columns (duh). You still have all the statements and reasons (just written at the bottom).
Sq ) Sometimes its a little tricky how it all lays out on your paper, but you just gotta learn to go
Sectd 2 s et ao with the How with the flow, man.
S
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Geometry Reduced to Formal Logic

This i1s kooky, because
what justifies an arrow!!

SEC

Finally, a last example using a flow proof.

Example:
o P,
Given: PN L NA,EB LB
\ -
S PA = ER,
taj
N .A=.ADR, (R = .ADR N S A
( Prove: APAN = AERB and name the transformation
N
ote B R
“A”o PROOF:
n ¢ =
y BN | NAER | RPll £LPNA and ZEBR S _ -
It h PN L NA, ER L BRI e S — ZPNA = ZLERBR (2)

m \

OPAN =AERB (4)

det PA = ER >
- /
@ R ZA = ZADR, e )

ZR = ZADR

\ 4

Reasons: 1) L lines form rt Ls; 2) If 2 Zs are rt, they are = ;
3) If 2 Ls are = to the same Z, they are = ; 4) AAS = i

The transformation needed is a translation of length PE (or NI3).
Sect

Se ;())uursrj You can see how a flow proof is similar to a 2-column proof, it’s just not written in 2-
As tr columns (duh). You still have all the statements and reasons (just written at the bottom).
Sq SHED). Sometimes its a little tricky how it all lays out on your paper, but you just gotta learn to go
— e st a0 with the How with the flow, man.
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Further Reading: Tarski’s System(s) of Geometry

THE BULLETIN OF SYMBOLIC LoGIC
Volume 5. Number 2. June 1999

TARSKI'S SYSTEM OF GEOMETRY

ALFRED TARSKI AND STEVEN GIVANT

Abstract. This paper is an edited form of a letter written by the two authors (in the name
of Tarski) to Wolfram Schwabhiuser around 1978. It contains extended remarks about
Tarski’s
its historical evolution, the history of specific axioms, the questions of independence of
axioms and primitive notions, and versions of the system suitable for the development of

system of foundations for Euclidean geometry. in particular its distinctive features,

1-dimensional geometry.

In his 1926-27 lectures at the University of Warsaw, Alfred Tarski gave
an axiomatic development of elementary Euclidean geometry, the part of
plane Euclidean geometry that is not based upon set-theoretical notions,
or, in other words, the part that can be developed within the framework
of first-order logic. He proved. around 1930, that his system of geometry
admits elimination of quantifiers: every formula is provably equivalent (on
the basis of the axioms) to a Boolean combination of basic formulas. From
this theorem he drew several fundamental corollaries. First, the theory is
complete: every assertion is either provable or refutable. Second, the theory
is decidable—there is a mechanical procedure for determining whether or
not any given assertion is provable. Third, there is a constructive consistency
proof for the theory. Substantial simplifications in Tarski’s axiom system
and the development of geometry based on them were obtained by Tarski
and his students during the period 1955-65. All of these various results were
described in Tarski [41], [44], [45]. and Gupta [5].

Aside from the importance of its metamathematical properties, Tarski’s
system of geometry merits attention because of the extreme elegance and
simplicity of its set of axioms, especially in the final form that it achieved
around 1965. Yet, until fairly recently, no systematic development of ge-
ometry based on his axioms existed. In the early 1960s Wanda Szmielew
and Tarski began the project of preparing a treatise on the foundations of
geometry developed within the framework of contemporary mathematical
logic. A systematic development of Euclidean geometry based on Tarski’s
axioms was to constitute the first part of the treatise. The project made
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of the axiom schema As.11. Thus it is an axiom set for elementary 2-
dimensional Euclidean geometry. The possibility of modifying the dimen-
sion axioms Ax.8? and Ax.9,?) in order to obtain an axiom set for n-
dimensional geometry is briefly mentioned. (The case n = 1 will be dis-
regarded in this section and in Sections 3-5.) The passage to an axiom
set for the full (non-elementary) Euclidean geometry, by replacing all in-
stances of the axiom schema As. 11 with Ax. 11, is not mentioned explic-
itly.

The next version of the axiom set appeared in Tarski [41]. Since =
is treated there as a logical notion, Ax. 13 and Ax. 19 are easily derivable
from the remaining axioms, and therefore have been omitted. Ax.20 is
replaced by a somewhat more concise variant, Ax.20,: we do not analyze
this modification since Ax. 20 is dropped entirely in subsequent versions.

A rather substantial simplification of the axiom set in Tarski [41] was
obtained in 195657 as a result of joint efforts by Eva Kallin, Scott Taylor,
and Tarski (see Tarski [44], p. 20. footnote). First, four axioms, Ax.5;,
Ax. 75, Ax.9{?), and Ax. 10, have been respectively replaced by equivalent
formulations Ax. 5, Ax.7;, Ax.9?) and Ax. 10;. In the case of Ax.9,?
the new formulation differs essentially from the old one. in both its form
and its mathematical content. In the remaining three cases the differences
are very slight. Some remarks in the later discussion will throw light on
the purpose of all these modifications. Next, in the modified axiom set
six axioms, Ax. 12, Ax. 14, Ax. 16, Ax. 17, Ax.20,. and Ax. 21, are shown
to be derivable from the remaining ones. and hence are omitted. Thus we
arrive at the set consisting of twelve axioms: Ax. 1-Ax. 6. Ax.7;, Ax. 82,
Ax.9?), Ax.10;, Ax. 15, Ax. 18, and all instances of the old axiom schema
As. 11. This axiom set was discussed by Tarski in his course on the foun-
dations of geometry given at the University of California, Berkeley, during
the academic year 1956-57. It appeared in print in Tarski [44]. It was
pointed out there that, by enriching the logical framework of our system of
geometry and by replacing the axiom schema As. 11 with the (second-order)
sentence Ax. 11, we arrive at an axiom set for the full (non-elementary) 2-
dimensional Euclidean geometry. Also, it was mentioned that, by replacing
Ax.8? and Ax.9? in either of the two above axiom sets with their n-
dimensional analogues (n = 3.4, ...), which are explicitly listed in Section 1
above as Ax. 8" and Ax.9"), axiom sets for n-dimensional geometry are
obtained.

Some general metamathematical results, published at about the same time
in Scott [30] and Szmielew [37]. show that the dimension axioms Ax. 8" and
Ax.9" _and Euclid’s axiom Ax. 10; can be equivalently replaced by a great
variety of sentences. The results will be discussed in Section 4, in connection
with the axioms involved. It does not seem that these results lead to any
formal simplification of the axiom sets discussed here.
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of the axiom schema As.11. Thus it is an axiom set for elementary 2-
dimensional Euclidean geometry. The possibility of modifying the dimen-
sion axioms Ax. 82 and Ax.9,? in order to obtain an axiom set for n-
dimensional geometry is briefly mentioned. (The case n = 1 will be dis-
regarded in this section and in Sections 3-5.) The passage to an axiom
set for the full (non-elementary) Euclidean geometry. by replacing all in-
stances of the axiom schema As. 11 with Ax. 11, is not mentioned explic-
itly.

The next version of the axiom set appeared in Tarski [41]. Since =
is treated there as a logical notion, Ax. 13 and Ax. 19 are easily derivable
from the remaining axioms, and therefore have been omitted. Ax.20 is
replaced by a somewhat more concise variant, Ax. 20,: we do not analyze
this modification since Ax. 20 is dropped entirely in subsequent versions.

A rather substantial simplification of the axiom set in Tarski [41] was
obtained in 1956-57 as a result of joint efforts by Eva Kallin, Scott Taylor,
and Tarski (see Tarski [44]. p. 20. footnote). First. four axioms. Ax.5;.
Ax. 7>, Ax.9{?, and Ax. 10, have been respectively replaced by equivalent
formulations Ax. 5, Ax.7;. Ax.9?), and Ax.10;. In the case of Ax.9,?
the new formulation differs essentially from the old one, in both its form
and its mathematical content. In the remaining three cases the differences
are very slight. Some remarks in the later discussion will throw light on
the purpose of all these modifications. Next, in the modified axiom set
six axioms, Ax. 12, Ax. 14, Ax. 16, Ax. 17, Ax.20,. and Ax. 21. are shown
to be derivable from the remaining ones. and hence are omitted. Thus we
arrive at the set consisting of twelve axioms: Ax. I-Ax. 6, Ax.7;. Ax. 8%,
Ax.9? Ax.10,, Ax. 15, Ax. 18, and all instances of the old axiom schema
As. 11. This axiom set was discussed by Tarski in his course on the foun-
dations of geometry given at the University of California, Berkeley, during
the academic year 1956-57. It appeared in print in Tarski [44]. It was
pointed out there that. by enriching the logical framework of our system of
geometry and by replacing the axiom schema As. 11 with the (second-order)
sentence Ax. 11, we arrive at an axiom set for the full (non-elementary) 2-
dimensional Euclidean geometry. Also, it was mentioned that, by replacing
Ax.8? and Ax.9? in either of the two above axiom sets with their n-
dimensional analogues (n = 3.4, ... ). which are explicitly listed in Section 1
above as Ax. 8" and Ax. 9", axiom sets for n-dimensional geometry are
obtained.

Some general metamathematical results, published at about the same time
in Scott [30] and Szmielew [37]. show that the dimension axioms Ax. 8 and
Ax.9" and Euclid’s axiom Ax. 10; can be equivalently replaced by a great
variety of sentences. The results will be discussed in Section 4, in connection
with the axioms involved. It does not seem that these results lead to any
formal simplification of the axiom sets discussed here.
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