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The Constraint-Logic
Formalism

The general model of games we will develop is based
on the idea of a constraint graph; by adding rules
defining legal moves on such graphs we get constraint
logic. Tn later chapters the graphs and the rules will
be specialized to produce games with different
numbers of players: zero, one, two, ete. A game
played on a constraint graph is a computation of a
sort, and simultaneously serves as a useful problem
to reduce to other games to show their hardness

In the game complexity literature, the standard

problem used to show games hard is some kind of

game played with a Boolean formula. The
Satisfiability problem (SAT), for example, can be

interpreted as a puzzle: the player must existentially
make a series of variable selections, so that the
formula is true. The corresponding model of
computation is nondeterminism, and the natural
complexity class is NP. Adding alternating existential
and universal quantifiers creates the Quantified
Boolean Formulas problem (QBF), which has a
natural interpretation as a two-player game [158
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Some of Godel’s great work is at the level of chess.



But to fully “gamify” Godel,
we need a harder game! ...
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American Go E-Journal

US Go Congress Goes a Little Crazy

Wednesday August 13, 2014

“White plays capturing black, putting herself and black into atari,” calls Crazy Go TD Terry Benson. He
officiated several games of Rengo Kriegspiel on Tuesday evening — a pair go game in which all four
players face away from the main board and play their stones on their own empty board in front of them;
the only clues about where their opponents — and even their partner — have played comes when they
make an illegal move, or play where their own team or their opponents already have stones. Rengo
Kriegspiel is only one of dozens of variants on the game of go that were played by an enthusiastic crowd
of around 100 players. Familiar games include Magnetic Go, 4 Color Go, Tessellation Go, 3D Go, Spiral
Go, and Blind Go. "After all these years, it's still crazy,” said TD and Crazy Go founder Terry Benson.
New Crazy Go games, never before played at a Go Congress, were even invented on the spot. Four
players donned sleeping masks to block their
vision and transformed Blind Go into Rengo Blind
| Go, and a few other players added the
fundamentals of Tiddlywinks to their go game.
Spectators and players alike are enthusiastic

31t eemesan,

3. .

ibss ity

about the creativity of the games and the fun of adding a little Crazy to Go; “Crazy Go is my favorite part
of the Congress!" said Bob Crites.
- report/photos by Karoline Li
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Rengo Kriegspiel

“One of the authors has personally played this game,
and it’s intriguing to think that it’'s possible he has
played the hardest game in the world, which cannot
even in principle be played by any algorithm. (Hearn &
Domaine 2009, sect 3.4.2, para. 2)
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“[E]ither ... the human mind (even within the realm
of pure mathematics) infinitely surpasses the power
of any finite machine, or else there exist absolutely

[humanly?] unsolvable diophantine problems.”
— Godel, 1951, Providence R




Godel’s Either/Or

“[E]ither ... the human mind (even within the realm
of pure mathematics) infinitely surpasses the power
of any finite machine, or else there exist absolutely

[humanly?] unsolvable diophantine problems.”
— Godel, 1951, Providence R

More precisely, what does this mean!?




PT as a Diophantine Equation

Equations of this sort were introduced to you in middle-school, when you were asked
to find the hypotenuse of a right triangle when you knew its sides; the familiar equation,
the famous Pythagorean Theorem that most adults will remember at least echoes of
into their old age, is:

(PT) a*+b*=c?
and this is of course equivalent to
(PTY a*+b*>—=c?=0,

which is a Diophantine equation. Such equations have at least two

unknowns (here, we of course have three: a, b, ¢), and the equation is solved when
positive integers for the unknowns are found that render the equation true. Three
positive integers that render (PT") true are

a=4,b=3,¢c=25.

It Is mathematically impossible that there is a finite computing machine capable of
solving any Diophantine equation given to it as a challenge (!).



... wWhich means that the 10th of Hilbert’s Problems is settled:

Article  Talk Read Edit View history | Search Wikipedia Q

Hilbert's problems

From Wikipedia, the free encyclopedia

Hilbert's problems are twenty-three problems in mathematics published by German mathematician David Hilbert in 1900. The problems were all
unsolved at the time, and several of them were very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13,
16, 19, 21, and 22) at the Paris conference of the International Congress of Mathematicians, speaking on August 8 in the Sorbonne. The complete
list of 23 problems was published later, most notably in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American
Mathematical Society.!]

Contents [hide]
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Resolved. Result: Impossible; Matiyasevich's theorem implies that there is no
such algorithm.
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Background

problem?” 1In his lecture, Gédel precisely defines diophantine problems,
but we don’t need to bother with all of the details here; we only need to
appreciate the general structure of such a problem, and that can be achieved
quickly as follows, given what was introduced in Chapter 2.

Each diophantine problem has at its core a polynomial P whose variables
are comprised by two lists, x1,z2,...,z, and y1,y2,...,ym; all variables
must be integers, and the same for subscripts n and m. To represent a
polynomial in a manner that announces its variables, we can write

P(-’Elv-rQa ey Ty Y1, Y2, - - 7y_])

But Godel was specifically interested in whether, for all integers that can be
set to the variables x;, there are integers that can be set to the y;, such that
the polynomial equals 0. To make this clearer, first, here are two particular,
simple equations that employ polynomials that are both instances of the
needed form:

El 3z—-2y=0
E2 222—-y=0

All we need to do now is prefix these equations with quantifiers in the pattern
Godel gave. This pattern is quite simple: universally quantify over each x;
variable (using the now-familiar V), after which we existentially quantify
over each y; variable (using the also-now-familiar 3). Thus, here are the
two diophantine problems that correspond to the pair E1 and E2 from just
above:

P1  Is it true that Va3y(3z — 2y = 0)7
P2  Isit true that Va3y2z? — y = 0?7
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1. Diophantine Sets. In this article the usual problem of Diophantine equations
will be inverted. Instead of being given an equation and seeking its solutions, one
will begin with the set of “‘solutions’’ and seek a corresponding Diophantine equation.
More precisely:

DEFINITION. A set S of ordered n-tuples of positive integers is called Diophantine
if there is a polynomial P(x,, -+, X,, V1, Ym), Where m = 0, with integer coefficients
such that a given n-tuple (x,,--,x,) belongs to S if and only if there exist positive
integers y, -+, y,, for which

This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM
All use subject to JSTOR Terms and Conditions

1973] HILBERT’S TENTH PROBLEM IS UNSOLVABLE 235

P(xl;"':xmyls"'yym) =0.

Borrowing from logic the symbols ‘“3”* for “‘there exists’’ and ‘‘<>>’ for “‘if and
only if”’, the relation between the set S and the polynomial P can be written succinctly
as:

<xl9 "'1xn> ES¢(3 V1s "',ym) [P(xl, X V1s "'»ym) = 0];

or equivalently:

S = {<x1""»xn>,(aylr"')ym) [P(xlr"'rxmyl:"'rym) = 0]}-

Note that P may (and in non-trivial cases always will) have negative coefficients.
The word ‘‘polynomial” should always be so construed in the article except where
the contrary is explicitly stated. Also all numbers in this article are positive integers
unless the contrary is stated.
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Notice that this is a perfect fit
with how we used formal logic
to present and understand the
Polynomial Hierarchy and the
Arithmetic Hierarchy.

1. Diophantine Sets. In this article the usual problem of Diophantine equations
will be inverted. Instead of being given an equation and seeking its solutions, one
will begin with the set of “‘solutions’’ and seek a corresponding Diophantine equation.
More precisely:

DEerFINITION. A set S of ordered n-tuples of positive integers is called Diophantine
if there is a polynomial P(x,, -+, X,, V1, ***, Ym), Where m = 0, with integer coefficients
such that a given -n-tuple {x,,--+,x,» belongs to S if and only if there exist positive
integers yy, -+, y,, for which
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P(xl""sxnsyl""yym) =0.

Borrowing from logic the symbols ‘“3” for ‘‘there exists’’ and ‘‘<>”’ for ‘‘if and
only if”’, the relation between the set S and the polynomial P can be written succinctly
as:

<x1’ ""xn> GS¢’(3 Yiss ym) [P(xl’ X Y1ttt ym) = 0],

or equivalently:
S = {<xb'"’xn>, (aylr""ym) [P(xb"';xn;ylr'“rym) = 0]}'

Note that P may (and in non-trivial cases always will) have negative coefficients.
The word ‘“polynomial” should always be so construed in the article except where
the contrary is explicitly stated. Also all numbers in this article are positive integers
unless the contrary is stated.




Diophantine “Threat” in
the Programming Language Hyperlog®

HyperSlate® | @& — 2 Bezier Diophantine1 [HYPERLOG]: Saved with @ symbols.

assume

[ myfunc(xy) » ((3*x) - (2*y)) }

from {A POLYNOMIAL FUNCTION}

COMPUTE

8 = myfunc(4, 2) J

from {APOLYNOMIAL FUNCTION}
COMPUTE

[ @A 8 = myfunc(l, 5) ]

COMPUTE

1=myfunc(1, 1)
from {APOLYNOMIAL FUNCTION}

assume

xminusy(x,y) » (x - )
HYPERLOG { from {10}
HYPERLOG

vx: 3y: 0 = myfunc(x, y) |
from {A POLYNOMIAL FUNCTION} B 3x: ay: 1= myfunc(xl y)
from {A POLYNOMIAL FUNCTION}

from {APOLYNOMIAL FUNCTION}

COMPUTE COMPUTE

0 = xminusy(5, 5) J [ zero?(xminusy(5, 5)) ]

from {10} from {10}

HYPERLOG

3x: zero?(xminusy(5, x))
from {10}
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3P s.t. no human mind could ever decide V& Vay - - - Vap Iy Jys - - - Iz (P(x1, 22, . -+, Thy Y1, Y2, - - -5 Yj) 7
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Earlier Godelian Argument for the “No.”
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Abstract

Do human persons hypercompute? Or, as the doctrine of computationalism holds,
are they information processors at or below the Turing Limit? If the former,
given the essence of hypercomputation, persons must in some real way be
capable of infinitary information processing. Using as a springboard Godel’s
little-known assertion that the human mind has a power “converging to infinity”,
and as an anchoring problem Rado’s [T. Rado, On non-computable functions,
Bell System Technical Journal 41 (1963) 877-884] Turing-uncomputable “busy
[ Table 1 beaver” (or X) function, we present in this short paper a new argument that, in
fact, human persons can hypercompute. The argument is intended to be
formidable, not conclusive: it brings Gédel’s intuition to a greater level of
precision, and places it within a sensible case against computationalism.
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The Particular Work Nutshell Diagnosis Beyond AI?
Completeness Thm. (Ch. 3) Reduction lemma impressive. Likely Not
First Incomp. Thm. (Ch. 4) Arithmetization seminal. Likely Not
Second Incomp. Thm. (Ch. 5) Easy with G1 in hand. Not

Speedup Thm. (Ch. 6) Some versions quick w/ G1 in hand. Not
Continuum Hyp. Thm. (Ch. 7) | Stunning tour de force; fully ab initio. | Yes
Time-Travel Thm. (Ch. 8) Unqualified to even guess. Unknown.
“God Theorem” (Ch. 9) An ancient trajectory from Anselm. Yes

*On Intuitionistic Logic Beyond our scope. Likely Not
*Philosophical Reasoning Undeniably beyond foreseeable Al Yes
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Will Al Match (Or Even Exceed) Human Intelligence?

I: “Negative” enumerative induction for = 3year (Al = HI @ year,) from
Al # Hl@year g0 A ... NAl # HI@year, . Plus the proposition that Al

is In fact not improving — relative to the intellectual stuff that matters most.

2: There is no absolutely unsolvable-for-humans Diophantine problem.
Hence as Godel explained, we get “No.”

3. Amundsen and The Explorer Argument.

4: And finally, the sledgehammer is used: phenomenal consciousness.




And now let’s wrap up with final logistics:
Required Problems
Test 3 — just 2000010118
Visit to Final-Grades Algorithm:

E.g., for John Doe:

4x.10 + 4x.15 + 4.25 + 4x.10 + 4x.40 = 4 = A






Med nok penger, kan
logikk lese alle problemer.



