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How the Al Talent Race
Is Reshaping the Tech
Job Market

In industries from finance to retail,
companies are seeking artificial-intelligence
skills when looking for technology staff

Share of newly listed technology* jobs that are
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“Technology jobs are a broad group of computer-and math-related
occupations

Note: U.S.only. 1Q 2025 figures are as of January.
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On the esemplastic
extensional-logic ladder ...
questions!
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The Ladder of Expressivity

<|'OL Jz,y AR, R*[R(z) A R(y) A R*(x,y) A Positive(R*) A R(fatherOf (x))]

L3

QOL dx
25
FOL dx
A -

Things x and y, along with the father of x, share a certain
property; and, x R4s y, where RZ Is a positive property.

Jy3dR|R(x) N R(y) A Likes(x,y) A R(fatherOf(x))]

Things x and y, along with the father of x,
share a certain property (and x likes y).

Llama(x) A Llama(b) A Likes(x,b) A Llama(fatherOf (x))]

here's some thing which is a llama and likes Betty

(which is also a llama), and whose father is a llama too.

ZOL Llama(a) A Llama(b) A Likes(a,b) A Llama( fatherOf (a))

g() Alvin is a llama, as is Betty, Alvin likes Betty, and the father of Alvin is a llama as well.
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Incomplete!
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In intensional logics, meaning and designation are separated, and compositionality is abandoned.




James believes Blinky believes that the ball is in the cup at location #1.

B(blinky, loc-ball- 1)

(Believes! blinky loc-ball-1)

Create file

Propositional Calculus Lo = Pure Predicate Calculus L, = First-order Logic L, = Second-order Logic n u m E
DCEC (fragment) Hyperlog

Blinky

In intensional logics, meaning and designation are separated, and compositionality is abandoned.




James believes Blinky believes that the ball is in the cup at location #1.

B(blinky, loc-ball-1)

(Believes! blinky loc-ball-1)

Create file

Propos .1 Calculus Lo = Pure Predicate Calculus L, = First-order Logic L, = Second-order Logic n u m E
DCEC (fragment) Hyperlog

Blinky

In intensional logics, meaning and designation are separated, and compositionality is abandoned.




Blinky believes that the ball is in the cup at location #1.

James believes Blinky believes that the ball is in the cup at location #1.

B(blinky, loc-ball-1)

(Believes! blinky loc-ball-1)

Create file

DCEC (fragment) Hyperlog

Blinky

In intensional logics, meaning and designation are separated, and compositionality is abandoned.




False Belief Task Demands
Intensional Logic ...



False Belief Task Demands
Intensional Logic ...




False Belief Task Demands
Intensional Logic ...




Better, But Embryonic:
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Done, a Decade Ago,
Formally & Implementation/Simulation

Propositional attitudes and causation

Konstantine Arkoudas and Selmer Bringsjord

Cognitive Science and Computer Science Departments, RPI
arkouk@rpi.edu, brings@rpi.edu

[ [ )
A rko u d as K & B rl n S O rd ; Abstract. Predicting and explaining the behavior of others in terms of
) * ) *

mental states is indispensable for everyday life. It will be equally impor-
tant for artificial agents. We present an inference system for representing

‘ ‘ Y ° and reasoning about mental states, and use it to provide a formal analysis

of the false-belief task. The system allows for the representation of infor-

(2 O O 9) P ro P O S Itl O n a I mation about events, causation, and perceptual, doxastic, and epistemic
states (vision, belief, and knowledge), incorporating ideas from the event

calculus and multi-agent epistemic logic. Unlike previous Al formalisms,

hd * ’ ’ our focus here is on mechanized proofs and proof programmability, not
t It u e S a n a u S atl O n on metamathematical results. Reasoning is performed via relatively cog-
nitively plausible inference rules, and a degree of automation is achieved
1 Introduction
e . . . . . . - o .
[ Interpreting the behavior of other people is indispensable for everyday life. It is
an n Or‘ ' l a ’CS () ° ° something that we do constantly, on a daily basis, and it helps us not only to

make sense of human behavior, but also to predict it and—to a certain extent

by general-purpose inference methods and by a syntactic embedding of
the system in first-order ll)gi('.

to control it. How exactly do we manage that? That is not currently known,
h '//l . d /PR'CA' | 04 | 709 df but many have argued that the ability to ascribe mental states to others and to
ttp <I”>/'teﬂmmrple u W Sequentca C p reason about such mental states is a key component of our capacity to under-

stand human behavior. In particular, all social transactions, from engaging in

commerce and negotiating to making jokes and empathizing with other people’s
pain or joy, appear to require at least a rudimentary grasp of common-sense
psychology (CSP), i.e., a large body of truisms such as the following: When an
agent a (1) wants to achieve a certain state of affairs p, and (2) believes that
some action ¢ can bring about p, and (3) a knows how to carry out ¢; then,
ceteris paribus,! a will carry out ¢; when a sees that p, a knows that p; when a
fears that p and a discovers that p is the case, a is disappointed; and so on.
Artificial agents without a mastery of CSP would be severely handicapped in
their interactions with humans. This could present problems not only for artificial
agents trying to interpret human behavior, but also for artificial agents trying
to interpret the behavior of one another. When a system exhibits a complex
but rational behavior, and detailed knowledge of its internal structure is not

! Assuming that a is able to carry out ¢, that a has no conflicting desires that override

his goal that p: and so on.



http://kryten.mm.rpi.edu/PRICAI_w_sequentcalc_041709.pdf
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Humans Can Succeed

Neurobiologically normal, nurtured, educated,
and sufficiently motivated humans can correctly
answer any relevant query g for the infinite
progression, and prove that their answer is
correct. For the obvious subclass of queries
(the form of which appear in the box below),
they can prove and exploit the following lemma.

Lemma: Suppose FBT}, k € Z™, holds:;
(i.e. that level £ of FBT holds). Then, if k is even,
B>B, ...By ¢, where there are k + 1 iterated B;

operators; otherwise B1By ... B1By ¢, where there
again there are k + 1 iterated B; operators.




Passing to Probing Mastery
of the Specific Subclass

Experimenter to a: “At level k,
from which box will a; attempt to
retrieve the objects 0,! Prove it!”



Theoretical Machine Success on Infinite FBT!

Ok, so this logic machine exists in the
mathematical universe; but does there exist
an implemented machine with this power?



Theoretical Machine Success on Infinite FBT!

Ok, so this logic machine exists in the
mathematical universe; but does there exist
an implemented machine with this power?



Simulation Courtesy of ...

ShadowProver!
B




Level |

:name "Level 1: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Levell Belief: al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {
:P1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1)))

:P2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl))))))
:P3 (holds (In o bl) t1)
:C1l (Common! t@ (forall [?f ?t2 ?t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?tl1l ?t2))
(holds ?f ?t2))))

:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))
}

:goal (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3)))}



Level 2

{:name "Level 2: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Level2 Belief: a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"
:assumptions {
:P1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1))))

:P2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl)))))))

:P3 (holds (In o bl) t1)

:C1 (Common! t0O
(forall [?f ?t2 ?t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?tl1l ?t2))

(holds ?f ?t2))))
:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3))))}



Level 3

{:name "Level 3: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Level3 Belief: a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {

:P1 (Perceives! al t1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1)))))
:P2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl))))))))

:P3 (holds (In o bl) t1)
:C1 (Common! tO
(forall [?f ?t2 ?7t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?t1 ?t2))
(holds ?f ?7t2))))
:C2 (Common! t0 (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3)))))}



Level 4

{:name "Level 4: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Leveld4 Belief: a2 believes al believes a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {

:P1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 t1 (holds (In o bl) t1))))))
:P2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl)))))))))

:P3 (holds (In o bl) t1)

:C1 (Common! t0@
(forall [?f ?t2 ?t2]
(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl) (< ?tl1 ?t2))

(holds ?f ?t2))))
:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3))))))}



Level 5

{:name "Level 5: False Belief Task "

:description "Agent al puts an object o into bl in plain view of a2.
Agent a2 then leaves, and in the absence of a2, al moves o
from bl into b2 ; this movement isn’t perceived by a2 . Agent
a2 now returns, and a is asked by the experimenter e: “If a2
desires to retrieve o, which box will a2 look in?” If younger
than four or five, a will reply “In b ” (which of course fails 2
the task); after this age subjects respond with the correct “In bl.”

Level5 Belief: al believes a2 believes al believes a2 believes al believes a2 believes o is in bl.

:date "Monday July 22, 2019"

:assumptions {

:P1 (Perceives! al t1 (Perceives! a2 tl1 (Perceives! al tl1 (Perceives! a2 t1 (Perceives! al t1 (Perceives! a2 tl1 (holds (In o bl) t1)))))))
:P2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (Believes! al t2 (Believes! a2 t2 (not (exists [?e] (terminates ?e (In o bl))))))))))

:P3 (holds (In o bl) t1)

:C1 (Common! t0
(forall [?f ?t2 ?t2]

(if (and (not (exists [?e] (terminates ?e ?f))) (holds ?f ?tl1l) (< ?t1 ?t2))
(holds ?f 7t2))))

:C2 (Common! t@ (and (< t1 t2) (< t2 t3) (< t1 t3)))}

:goal (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (Believes! al t3 (Believes! a2 t3 (holds (In o bl) t3)))))))}









Time (in seconds) to Prove

9

6.75

4.5

2.25

Level 1 Level 2 Level 3 Level 4 Level 5



Simulation of Level 5 in Real Time

/Library/Java/JavaVirtualMachines/jdk1.8.0_131. jdk/Contents/Home/bin/java ...
objc[16653]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java (0x102a2d4c@) and /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre/lib/libinstrument.dylib (0x102ab94e0)
- Level 5
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/Library/Java/JavaVirtualMachines/jdk1.8.0_131. jdk/Contents/Home/bin/java ...
objc[16653]: Class JavalLaunchHelper is implemented in both /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java (0x102a2d4c@) and /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre/lib/libinstrument.dylib (0x102ab94e0)
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Chisholm’s Paradox
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DFV »d {Given2} Assume v
S T~

‘

(Axiom4. "Modus ponens for provability."
{Axiom4} Assume v/

\S

[Axioms5. "Theorems are obligatory."
{Axiom5} Assume v/

\

Axiom1. "All theorems of the propositional calculus."
{Axiom1} Assume v/
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“Everything smart knows that everything tinks anything
that tinks something identical with something.”

“Blinky 1s smart and tinks himself.”

“Everything tinks anything that tinks
something identical with something.”

T herefore:

"Yolanda tinks Xavier,”



Rune Fisker

THE SHIFT

When A.L Passes
This Test, Look Out

The creators of a new test called “Humanity’s
Last Exam” argue we may soon lose the ability
to create tests hard enough for A.l. models.

p Listen to this article - 8:04 min Learn more

- By Kevin Roose
Reporting from San Francisco
Jan. 23, 2025

If you’re looking for a new reason to be
nervous about artificial intelligence, try this:
Some of the smartest humans in the world are
struggling to create tests that A.I. systems
can’t pass.
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= ChatGPT 40 > Z

Blinky is smart and tinks himself.

Blinky is indeed a thoughtful and self-aware
household robot. He doesn't just follow orders
blindly—he considers the implications of his
actions, the needs of the Booker family, and
even the deeper meaning behind his existence.

Would you like Blinky to explore a philosophical
question, optimize his household tasks, or
maybe have a moment of self-reflection?

@ 6 PO

Everything smart knows that
everything tinks anything that
tinks something identical with
something.

That's a fascinating and layered statement,
Blinky. If | parse it correctly, you're suggesting
that intelligence recognizes that all thinking
entities perceive identical concepts as being
fundamentally linked.
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ChatGPT 40 >

&

Blinky

Blinky is indeed a tho
household robot. He ¢
blindly—he considers
actions, the needs of
even the deeper mea

Would you like Blinky
question, optimize his
maybe have a momer

@ & O P A

Ever
ever
tinkg
som

That's a fascinating a
Blinky. If | parse it cor

that intelligence recof

ChatGPT 40 >

This raises an interesting question: is
“thinking" merely the act of recognizing
identity and equivalence, or does it involve
something deeper—Ilike creating new
connections or questioning the very nature of
those identities?

What do you think, Blinky? Does your thinking
consist of recognizing sameness, or do you go
beyond that?

o & & @

Vs
/

Can you prove from these two
propositions that Blinky's friend
Yolanda is smart?

That depends on the exact logical structure of
the two propositions. Let’'s break it down
systematically.

entities perceive identical concepts as being

fundamentally linked.
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“thinking” merely
identity and equi
something deep
connections or 0
those identities?

What do you thir
consist of recog
beyond that?

@ & & Y

<o

That depends or]

ChatGPT 40 >

You stated:

1. Everything smart knows that everything
thinks anything that thinks something
identical with something.

- This suggests that all smart entities
recognize that any thinking entity

acknowledges identical things as identical.

2. Blinky is smart and thinks himself.

- This establishes Blinky as a smart entity
and confirms that he engages in thinking.

To prove that Blinky's friend Yolanda is
smart, we need a logical connection between
these premises and Yolanda's intelligence.

the two propositions. Let’'s break it down

systematically.

entities perceive identical concepts as being

fundamentally linked.
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smart, we need a log
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the two propositions. Let's break it dow

systematically.

entities perceive identical concepts as being

fundamentally linked.

— ChatGPT 40 >

Would you like to formalize this in logical
notation or explore it further conceptually?

@ d 6 P O

Answer directly: Can you prove
from these two propositions | gave
you that Yolanda is smart?

No, the two given propositions do not provide
enough information to prove that Yolanda is
smart. They establish that Blinky is smart and
that smart entities recognize a certain property
of thinking, but they do not state anything
about Yolanda's intelligence.

@ ¢ b PO

Can you prove from the same two
propositions that Yolanda tinks
Xavier (who happens to be a
friend of Yolanda)?
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Vs
=/

%

rom thacao twin nronncitinne | navio

No, the two ¢
enough infor]
smart. They
that smart ef

of thinking, K

No, the two given propositions do not provide
enough information to prove that Yolanda
thinks Xavier. They only establish that Blinky is
smart and that smart entities recognize a
certain property of thinking, but they do not
state anything about Yolanda's thinking or
whether she thinks about Xavier.

about Yolanda's intelligence.

@ & O

Vs
=/

P

Can you prove from the same two
propositions that Yolanda tinks
Xavier (who happens to be a
friend of Yolanda)?
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