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Programming Languages

Instructor(s)
COURSE HOME Prof. Michael Ernst
MIT Course Number
6.821
SYLLABUS
As Taught In
Fall 2002
CALENDAR
Level
Graduate
ASSIGNMENTS
EXAMS
Programming computer screen. (Photo courtesy of
TOOLS openphoto.net.)
DOWNLOAD COURSE Course Features
MATERIALS

> Assignments: programming (no examples) > Exams (no solutions)

Course Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics
covered include: meta-circular interpreters, semantics (operational and denotational), type
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.
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Syllabus
Programming Languages CSCI-4430

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

I. Brief Course Description

This course is a study of important concepts in programming languages. Topics include programming language syntax and semantics, types and parameter passing, and programming paradigms
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for administrative questions, including homework extension requests, quiz and exam makeup
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will become more productive programmers, will be able to learn new programming languages with
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming language syntax and semantics, 2) implement a front-end for a programming language, 3)
explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, which are essential building blocks of programming languages, and 4) demonstrate competence
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and Haskell.

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.
IV. Class Work and Policies

Quizzes

There are 9 quizzes that should be completed and submitted individually. We will drop the lowest quiz grade and only 8 will count towards the final grade. Quizzes will be administered on Submitty
at the beginning of our regularly scheduled class time. We will be offering alternative times for quizzes and exams. If you are unable to attend during regularly scheduled class hours, you must
request an alternative time. Email course staff at proglang@cs.lists.rpi.edu by September 10 outlining the reasons why you will be attending at an alternative time (e.g., you reside in a different time
zone). We will assign an alternative time and you will be taking the quizzes during this time slot on the date of the quiz. Note that once assigned, you cannot change the quiz time slot.
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Can you create logic programs?

‘ GPT

Yes, | can help you create logic programs.
Logic programming involves defining rules
and facts to represent knowledge and then
using logical inference to derive new
information. If you have a specific logic
programming language or problem in mind,
please let me know, and I'll do my best to
assist you.

@ BILLY

Using Aristotle's fragment of first-order logic
(from his Organon), create a two-line logic
program for answering the query as to
whether all the dooopers are feeepy.
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@ BILLY

Using Aristotle
(from his Orga
program for an
whether all the

‘ GPT oo

In Aristotle’s fragment of first-order logic,
formulation of a two-line logic program can
be a bit challenging since his work predates
modern logic programming languages.
However, | can provide you with a basic
logical expression that captures the essence
of your query:

1. dooper(x) - feeepy(x)
2. 3ax dooper(x)

In this logical program, the first line
represents a rule that states if something is a
dooper (denoted by dooper(x)), then it is also
feeepy (denoted by feeepy(x)).

The second line represents the existence of
at least one dooper (denoted by 3x
dooper(x)), which implies that there are
entities that satisfy the condition of being a
dooper.

Combining these two lines, the logical
program implies that all dooopers are feeepy.
However, it's important to note that this is a
simplified representation based on Aristotle’s
fragment, and modern logic programming
languages may have more explicit syntax and
constructs for achieving the same goal.
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However, it's important to note that this is a
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fragment, and modern logic programming
languages may have more explicit syntax and
constructs for achieving the same goal.
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Combining these two lines, the logical
program implies that all dooopers are feeepy.
However, it's important to note that this is a
simplified representation based on Aristotle’s
fragment, and modern logic programming
languages may have more explicit syntax and
constructs for achieving the same goal.

However, | can provide a two-line
representation that captures the essence of
your query while taking into account
Aristotle’s logic:

1. dooper(x) - feeepy(x)
2. vX (dooper(x) > feeepy(x))

In this logical program, the first line is the
same as before, stating that if something is a
dooper, then it is feeepy.

The second line introduces a universal
quantifier (vx) and strengthens the
implication by stating that for all x, if x isa
dooper, then it must be feeepy. This line
represents the assertion that all dooopers are
feeepy.

While these two lines are not sufficient to
provide a conclusive answer based solely on
reasoning from them, they establish a logical
relationship between being a dooper and
being feeepy according to Aristotle’s
fragment of first-order logic. Further
inference rules and additional premises
would be required to draw definitive
conclusions.
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A Simple Leibnizian £, Theorem

93 Variant1LeibnizsLaw

Here you must prove in second-order logic = £, a consequence of Leibniz's Law (a.k.a. The Identity of
Indiscernibles, nicely explained here), which says that any two things having exactly the same properties are
identical, and vice versa. Here's the consequence in meta-logic (informally put, that if two things a and b differ
with respect to a property, they can't be identical):

IX(XaA-Xb)Fya#b

We use a subscript of ‘2’ on the provability relation to indicate that the allowable inference schemata in your
HyperSlate® are those from second-order logic.

You're permittted to leave remaining use of the PC provability oracle in your completed proof. (No deadline for
now.)




Moronic LLM Content

@ BILLY

There's a property Arush has but Beegerish
lacks, and the latter object is happy.

CHATGPT
It seems like you're describing a situation
with two objects or entities, Arush and
Beegerish, and attributing properties to
them. However, without additional context,
it's difficult to provide a meaningful response.
Could you provide more details? Are these
concepts, people, or perhaps objects in a
specific game or story? Please also clarify
what you mean by “Beegerish lacks” and “the
latter object is happy”.

@ BILLY

Do the names ‘Arush’ and ‘Beegerish’ denote
more than one object?

CHATGPT
Based on the information provided, it's hard
to determine if ‘Arush’ and ‘Beegerish’ are
referring to single or multiple objects. These
names could refer to people, concepts, or
any number of things depending on context.
Could you please provide more information
or clarify the context in which these names
are being used?
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referring to single or multiple objects. These
names could refer to people, concepts, or
any number of things depending on context.
Could you please provide more information
or clarify the context in which these names
are being used?

1. "Arush” is an object with a certain
property.

2. "Beegerish” is another object that lacks
this property.

3. "Beegerish” the latter object, is happy.

However, we don't have specific details
about the properties of these objects. But,
given that Beegerish is described as happy,
we can infer that the property Arush has and
Beegerish lacks could be ‘unhappiness’ or
not being happy. So to answer your question,
"Arush” and “Beegerish” do not denote more
than one object. Each name refers to one
object. The proof lies in the descriptors used:
the use of the words "has” and "lacks”
suggest singularity, as does the phrase “the
latter object,” which refers to Beegerish.
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RECHERCHE

There’s a property Arush has but
<IP)> .— Beegerish lacks, and the latter object
is happy.
< > . Do the names ‘Arush’ and ‘Beegerish’
q denote more than one object!?

L= (L,T) R : (P,q) — (YN[U, 0, 7(s)|cv(s))

C 7T(3)‘Oé(5) — (Y|N|U, 9)


https://programme.hypotheses.org

Execution Produces Answer to
Simple Leibnizian Query

HyperSlate® ~ ' Bezier ~ @b Public? @ VariantiLeibnizsLaw [HIGHER-ORDER-LOGIC]: Saved with @ symbols.

I
3x: X(a) A =X(b) ’_(l -
from {GIVENT1}
-(a=b)

from {WITNESS}
FOL-PROVABILITY not allowed in the final submission. Node 14. Computed in 125 (ms), size 74

assume
R(a) A <R(b)

from {WITNESS}

S
- PC + (Oracle) |
| [ a= b]
3 -rRb) ] from {SUPP FOR REDUCTIO}
from {WITNESS} -(a=b)
Node 6. Computed in 41 (ms), size 78 from {GIVEN1}

|

-R(a)
from {SUPP FOR REDUCTIOWITNESS}

PC (ac/e)

[ [FaLsuv EER

from {SUPP FOR REDUCTIOWITNESS}

Node FALSUM. Computed in 150 (ms), size 107

3 elim’

|
[ [FALSUM RGN

from {GIVEN1,SUPP FOR REDUCTIO} Y
z
PC + (Oracle) PC F (Oracle)
12 11
from {GIVEN1,SUPP FOR REDUCTIO} from {GIVEN1,SUPP FOR REDUCTIO} X
Node 12. Computed in 82 (ms), size 72 Node 11. Computed in 63 (ms), size 78

-(a=b)

from {GIVEN1}
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