Introducing Pure General Logic
Programming (PGLP), in
HyperSlate®:HyperLog®;

Review of All Inference Rules/

Schemata in PropCalc = &£, -

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAII
2/3/2025

RAI R

Rensselaer Al and Reasoning Lab

HyperSlate® isn’t a system for introductory formal logic;
it's — for some, in part apropos of programming — a way of life :).

HyperSlate® isn’t a system for introductory formal logic;
it's — for some, in part apropos of programming — a way of life :).

Logic-Programming Challenge |
to DeepSeek-R1, Analyzed in
HyperSlate®

HyperSlate® isn’t a system for introductory formal logic;
it's — for some, in part apropos of programming — a way of life :).

Logic-Programming Challenge |
to DeepSeek-R1, Analyzed in
HyperSlate®

Or: Aristotle Empowered With Motalen Al Tech Exceeds DeepSeek-R |

HyperSlate® isn’t a system for introductory formal logic;
it's — for some, in part apropos of programming — a way of life :).

Logic-Programming Challenge |
to DeepSeek-R1, Analyzed in
HyperSlate®

Or: Aristotle Empowered With Motalen Al Tech Exceeds DeepSeek-R |

SB * NSG * AB
020225212 INY

Logic-and-Al in the news

Chloe Niclas

Why Is This C.E.O.
Bragging About Replacing
Humans With A.L.?

Most large employers play down the likelihood
that bots will take our jobs. Then there’s
Klarna, a darling of tech investors.

Chloe Niclas

Why Is This C.E.O.
Bragging About Replacing
Humans With A.L.?

Most large employers play down the likelihood
that bots will take our jobs. Then there’s
Klarna, a darling of tech investors.

Over the past year, Klarna and Mr.
Siemiatkowski have repeatedly talked up the
amount of work they have automated using
generative A.lL., which serves up text, images
and videos that look like they were created by
people. “I am of the opinion that A.IL. can
already do all of the jobs that we, as humans,
do,” he told Bloomberg News, a view that goes
far beyond what most experts claim.

Over the past year, Klarna and Mr.

Siemiatkowski have repeatedly talked up the

amount of work they have automated using
generative A.l., which serves up text, images
and videos that look like they were created by
people. “I am of the opinion that A.l. can
already do all of the jobs that we, as humans,

-] do,” he told Bloomberg News, a view that goes
far beyond what most experts claim.

Bragging About Replacing
Humans With A.L.?

Most large employers play down the likelihood
that bots will take our jobs. Then there’s
Klarna, a darling of tech investors.

Logistics again ...

The Starting Code to Purchase in Bookstore

Your code for starting the registration process is:

To access HyperGrader, HyperSlate, the license agreement,
and to obtain the textbook LAMA-BDLA, go to::

https://rpi.logicamodernapproach.com

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: WIT_h IJ[S soﬁware

instead of LAMATM
paradigm!

https://rpi.logicamodernapproach.com

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: with ts software
instead of LAMAT™

https://rpi.logicamodernapproach.com

paradigm!

The email address you enter is case-sensitivel

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: with its software
' ™
https://rpi.logicamodernapproach.com instead of LAMA
paradigm!

The email address you enter is case-sensitivel

Your OS and browser must be fully up-to-date; Chrome
s the best choice, browser-wise (though | use Safar).

The Starting Code to Purchase in Bookstore

Once seal broken
on envelope, no

Your code for starting the registration process is: return. Remember
from first class, any
reservations, opt for

To access HyperGrader, HyperSlate, the license agreement, Stanfo I"d Paradlgm,
and to obtain the textbook LAMA-BDLA, go to:: with its software
' ™
https://rpi.logicamodernapproach.com instead of LAMA
paradigm!

The email address you enter is case-sensitivel

Your OS and browser must be fully up-to-date; Chrome
s the best choice, browser-wise (though | use Safar).

Watch that the link doesn’t end up being classified as spam.

Introducing Pure General Logic
Programming (PGLP), in
HyperSlate®:HyperLog®;

Review of All Inference Rules/

Schemata in PropCalc = &£, -

Selmer Bringsjord

Rensselaer Al & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science

Lally School of Management & Technology

Rensselaer Polytechnic Institute (RPI)
Troy, New York 12180 USA

IFLAII
2/3/2025

RAI R

Rensselaer Al and Reasoning Lab

A computer program and its execution in
PGLP (@ level of propositional calculus):

A computer program and its execution in
PGLP (@ level of propositional calculus):

GIVEN. @ A =
{GIVEN} Assume v

PCH v/

Y

GOAL. @
{GIVEN}

A computer program and its execution in
PGLP (@ level of propositional calculus):

GIVEN. @ A =
GIVEN} Assume v

Program: [{

PCH v/

Y

GOAL. @
{GIVEN}

A computer program and its execution in
PGLP (@ level of propositional calculus):

GIVEN. @ A =
GIVEN} Assume v

Program: [{

PCH v/

Y

GOAL. @
{GIVEN}

Query:

A computer program and its execution in
PGLP (@ level of propositional calculus):

. GIVEN. ¢ A -
Program. [{GIVEN} Assume v/
Automated Reasoner: PC‘F v/
GOAL. @

Query:

{GIVEN}

A computer program and its execution in
PGLP (@ level of propositional calculus):

. GIVEN. ¢ A -
Program. [{GIVEN} Assume v/
Checker
Automated Reasoner: PC‘F v/
GOAL. @

Query:

{GIVEN}

A computer program and its execution in
PGLP (@ level of propositional calculus):

. GIVEN. ¢ A -
Program. [{GIVEN} Assume v
Checker
Automated Reasoner: PC‘F/ /
GOAL. @

Query:

{GIVEN}

Euclid

Computational Logic’

Organon

“Universal

7

Entscheid.ungsproblem

Leibniz

/

An
Investigation
of the Laws
of Thought

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

»mwo o —

'S M — C 00 S

~ XK

Euclid

Computational Logic’

Organon

“Universal

7

Entscheid.ungsproblem

Leibniz

/

An
Investigation
of the Laws
of Thought

bic Vheorist

&

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

»mwo o —

'S M — C 00 S

~ XK

“Universal
Computational Logic’

Entscheid.ungsproblem

Leibniz

/

Euclid Organon

An
Investigation
of the Laws
of Thought

bic Vheorist

&

2020 2021

Intro to (Formal) Logic (& Al)

o—9O

»mwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

Leibniz
/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

An "
Investigation
of the Laws
of Thought

bic Vheorist

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

»mwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

bic Vheorist

o—9O

2020 2021

An "
Investigation
of the Laws
of Thought

Leibniz
/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon
Intro to (Formal) Logic (& Al)

Church

»mwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

bic Vheorist

o—9O

2020 2021

4
An b
Investigation
of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon
Intro to (Formal) Logic (& Al)

Church

»mwo o —

'S M — C 00 S

~ XK

7

Entscheid.ungsproblem

“Universal
Computational Logic”

bic Vheorist

o—9O

2020 2021

4
An b
Investigation
of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon
Intro to (Formal) Logic (& Al)

Church

»mwo o —

'S M — C 00 S

~ XK

“Universal
Computational Logic”

7

Entscheid.ungsproblem

bic Vheorist

An

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation
of the Laws
of Thought

o—9O

2020 2021

2
A
l

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

Church

»mwo o —

'S M — C 00 S

~ XK

Basic PL Ontology:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

An

of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

g

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»mwo o —

'S M — C 00 S

~ XK

Basic PL Ontology:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

An

of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation

Church

Turing

Entscheid.ungsproblem

bic Vheorist

Post

g

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»mwo o —

'S M — C 00 S

~ XK

Basic PL Ontology:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

An

of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

g

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»mwo o —

'S M — C 00 S

~ XK

Basic PL Ontology:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

An

of the Laws
of Thought

Leibniz

/

Exceeds Leibniz & de-mystifies
Euclid: the “compellingness” of
these proofs consists in their
being, at bottom, formal proofs in
first-order logic (FOL).

Organon

Investigation

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

'« ///

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

Lk

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»mwo o —

'S M — C 00 S

~ XK

Basic PL Ontology:
Functional = Church;
Procedural = Turing.
Where is logic-based/logicist
computation/programming?
“Universal
Computational Logic”

7

An

of the Laws
of Thought

Leibniz

/

Organon

xceeds Leibniz & de-mystifies
uclid: the “compellingness” of
hese proofs consists in their
eing, at bottom, formal proofs in
rst-order logic (FOL).

Investigation

Church

Turing

bic Vheorist

Entscheid.ungsproblem

Post

g

o—9O

2020 2021

Intro to (Formal) Logic (& Al)

Here’s what a computer is, and
given that, sorry, the
Entscheidungsproblem can’t be
solved by such a machine!

»mwo o —

'S M — C 00 S

~ XK

For Educators v Give Now v About v

Home » Courses » Electrical Engineering and Computer Science » Programming Languages

Programming Languages

Instructor(s)
COURSE HOME Prof. Michael Ernst
MIT Course Number
6.821
SYLLABUS
As Taught In
Fall 2002
CALENDAR
Level
Graduate
ASSIGNMENTS
EXAMS
Programming computer screen. (Photo courtesy of
TOOLS openphoto.net.)
DOWNLOAD COURSE Course Features
MATERIALS

> Assignments: programming (no examples) > Exams (no solutions)

Course Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics
covered include: meta-circular interpreters, semantics (operational and denotational), type
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.

10

SYLLABUS

CALENDAR

ASSIGNMENTS

EXAMS

TOOLS

DOWNLOAD COURSE
MATERIALS

MIT Course Number
6.821

As Taught In
Fall 2002

Level
Graduate

CITE THIS COURSE

Programming computer screen. (Photo courtesy of
openphoto.net.)

Ve

Course Features

> Assignments: programming_(no examples) > Exams (no solutions)

Course Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics
covered include: meta-circular interpreters, semantics (operational and denotational), type
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.

10

SYLLABUS

CALENDAR

ASSIGNMENTS

EXAMS

TOOLS

DOWNLOAD COURSE
MATERIALS

MIT Course Number
6.821

As Taught In
Fall 2002

Level
Graduate

CITE THIS COURSE

Programming computer screen. (Photo courtesy of
openphoto.net.)

Ve

Course Features

> Assignments: programming_(no examples) > Exams (no solutions)

Course Description

1 teaches the principles of functional, imperative, and logic programming languages.)Topics
cou . _ : . : . . . e
systems (polymorphism, inference, and abstract types), object oriented programming, modules,
and multiprocessing. The course involves substantial programming assignments and problem
sets as well as a significant amount of reading. The course uses the Scheme+ programming
language for all of its assignments.

10

Syllabus
Programming Languages CSCI-4430

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

I. Brief Course Description

This course is a study of important concepts in programming languages. Topics include programming language syntax and semantics, types and parameter passing, and programming paradigms
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for administrative questions, including homework extension requests, quiz and exam makeup
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will become more productive programmers, will be able to learn new programming languages with
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming language syntax and semantics, 2) implement a front-end for a programming language, 3)
explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, which are essential building blocks of programming languages, and 4) demonstrate competence
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and Haskell.

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.
IV. Class Work and Policies

Quizzes

There are 9 quizzes that should be completed and submitted individually. We will drop the lowest quiz grade and only 8 will count towards the final grade. Quizzes will be administered on Submitty
at the beginning of our regularly scheduled class time. We will be offering alternative times for quizzes and exams. If you are unable to attend during regularly scheduled class hours, you must
request an alternative time. Email course staff at proglang@cs.lists.rpi.edu by September 10 outlining the reasons why you will be attending at an alternative time (e.g., you reside in a different time
zone). We will assign an alternative time and you will be taking the quizzes during this time slot on the date of the quiz. Note that once assigned, you cannot change the quiz time slot.

11

Syllab
Programming Langt

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

|. Brief Course Description

This course is a study of important concepts in programming languages. Topics include programming
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for a
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will bec
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming
explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, \
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and |

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.

IV. Class Work and Policies

Syllab
Programming Langt

Meetings: Webex, TF 2:30-4:20pm
Website: http://www.cs.rpi.edu/~milanova/csci4430

|. Brief Course Description

ing languages. Topics include programming
(logic-oriented, functional, von Neumann, object-oriented).

Prerequisite: Introduction to Algorithms (CSCI 2300) and Principles of Software (CSCI 2600)

Mailing list: proglang@cs.lists.rpi.edu. Email goes to Milanova, Kuzmin, and Hulbert. Use this list for a
requests, extra time scheduling, and so on.

Il. Learning Outcomes

The goal of this course is to teach students how to analyze programming languages. Students will bec
ease, and will be able to choose the most suitable programming language for a given problem.

Concretely, students who successfully complete the course should be able to 1) explain programming
explain the concepts of scoping, data abstraction, types, control abstraction, and parameter passing, \
across a spectrum of programming language paradigms by writing programs in Prolog, Scheme, and |

lll. Required Textbook

Programming Language Pragmatics, Fourth Edition, by Michael Scott, Morgan Kaufmann, 2015.

IV. Class Work and Policies

There are Iwo Logicist Branches;
Bl:

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell

https://en.wikipedia.org/wiki/Haskell_(programming_language)

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell OCaml, Scheme, Clojure, ...

https://en.wikipedia.org/wiki/Haskell_(programming_language)

There are Iwo Logicist Branches;
Bl:

Frege, 893
“Ahal Currying! | recast multiple-arity
operations with functions into a unary affair!”

Schonfinkel, |920's:
“Ahal | can do this stuff
using combinatory logic!”

Church, 1920's & 30’s:
“Ahal The lambda calculus!

Haskell OCaml, Scheme, Clojure, ...
Athena

https://en.wikipedia.org/wiki/Haskell_(programming_language)
http://www.proofcentral.org/athena/

Iwo Logicist Branches; B2:

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Prolog?

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning
Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

PGLP

HyperSlate® : Hyperlog®

https://rpi.logicamodernapproach.com

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

oo I I ROl)

PGLP

HyperSlate® : Hyperlog®

https://rpi.logicamodernapproach.com

Iwo Logicist Branches; B2:

The Al Branch: Automated Reasoning

Leibniz

Simon & Newell @
Dawn of Modern Al: LT & GPS

oo I I ROl)

PGLP

HyperSlate® : Hyperlog®

https://rpi.logicamodernapproach.com

Rﬁ%mw PROGRAMme
DEL

Pure General Logic Programming

(PGLP)
P L
q L

L= (LT)

R : (P,q) — (YINU,d,m(5) cs))
C : mla — (YIN]U,0)

https://programme.hypotheses.org

IDCeC

DCECT

The Universe of Logics

S 32 — second-order logic

Zo =

zero-order logic

S gl = first-order logic

ﬁf’ippc < < < gl — description logic:

formal language

// ey,

H Y‘N’U 5 W(S)‘CV(S)
F (C ; 77(3)‘04(3) — (Y|N|U, 9)

checker

Moronic LLM Content

LA X J
e BILLY

Can you create logic programs?

‘ GPT

Yes, | can help you create logic programs.
Logic programming involves defining rules
and facts to represent knowledge and then
using logical inference to derive new
information. If you have a specific logic
programming language or problem in mind,
please let me know, and I'll do my best to
assist you.

@ BILLY

Using Aristotle's fragment of first-order logic
(from his Organon), create a two-line logic
program for answering the query as to
whether all the dooopers are feeepy.

Moronic LLM Content

@ BILLY

Can you creatg

‘ GPT

Yes, | can help
Logic program
and facts tore
using logical in
information. If
programming |
please let me K
assist you.

@ BILLY

Using Aristotle
(from his Orga
program for an
whether all the

‘ GPT oo

In Aristotle’s fragment of first-order logic,
formulation of a two-line logic program can
be a bit challenging since his work predates
modern logic programming languages.
However, | can provide you with a basic
logical expression that captures the essence
of your query:

1. dooper(x) - feeepy(x)
2. 3ax dooper(x)

In this logical program, the first line
represents a rule that states if something is a
dooper (denoted by dooper(x)), then it is also
feeepy (denoted by feeepy(x)).

The second line represents the existence of
at least one dooper (denoted by 3x
dooper(x)), which implies that there are
entities that satisfy the condition of being a
dooper.

Combining these two lines, the logical
program implies that all dooopers are feeepy.
However, it's important to note that this is a
simplified representation based on Aristotle’s
fragment, and modern logic programming
languages may have more explicit syntax and
constructs for achieving the same goal.

17

Moronic LLM Content

‘ GPT oo

In Aristotle’s fragment of first-order logic,

BILLY
Can you creatg

GPT

Yes, | can help
Logic program
and facts tore
using logical in
information. If
programming |
please let me K
assist you.

BILLY

Using Aristotle
(from his Orga
program for an
whether all the

formulation of a two-line logic program can
be a bit challenging since his work predates
modern logic programming languages.
However, | can provide you with a basic
logical expression that captures the essence

of your query:

1. dooper(x) - feeepy(x)
2. 3ax dooper(x)

In this logical program, the
represents a rule that state
dooper (denoted by doope
feeepy (denoted by feeepy

The second line represents
at least one dooper (denot
dooper(x)), which implies t
entities that satisfy the con
dooper.

e BILLY

Using Aristotle’s fragment of first-order |
(from his Organon), create a two-line logic
program for answering the query as to
whether all dooopers are feeepy, such that
the answer must be based on reasoning from
both lines.

GPT

In Aristotle’s fragment of first-order logic, it's
not straightforward to create a two-line logic
program that provides a conclusive answer
based solely on reasoning from those two
lines. Aristotle's logic system is limited in
expressiveness and lacks some key concepts
necessary for such reasoning.

Combining these two lines, the logical
program implies that all dooopers are feeepy.
However, it's important to note that this is a
simplified representation based on Aristotle’s
fragment, and modern logic programming
languages may have more explicit syntax and
constructs for achieving the same goal.

17

Moronic LLM Content

BILLY
Can you creatg

GPT

Yes, | can help
Logic program
and facts tore
using logical in
information. If
programming |
please let me K
assist you.

BILLY

Using Aristotle
(from his Orga
program for an
whether all the

‘ GPT

In Aristotle’s fragment of first-order logic,
formulation of a two-line logic program can
be a bit challenging since his work predates
modern logic programming languages.
However, | can provide you with a basic
logical expression that captures the essence

of your query:

1. dooper(x) - feeepy(x)
2. 3ax dooper(x)

In this logical program, the
represents a rule that state
dooper (denoted by doope
feeepy (denoted by feeepy

The second line represents
at least one dooper (denot
dooper(x)), which implies t
entities that satisfy the con
dooper.

e BILLY

Using Aristotle’s fragmer
(from his Organon), crea
program for answering tk
whether all dooopers are
the answer must be bass
both lines.

' GPT

In Aristotle’s fragment of]
not straightforward to cr
program that provides a
based solely on reasonin
lines. Aristotle's logic sys
expressiveness and lack
necessary for such reasg

Combining these two lines, the logical
program implies that all dooopers are feeepy.
However, it's important to note that this is a
simplified representation based on Aristotle’s
fragment, and modern logic programming
languages may have more explicit syntax and
constructs for achieving the same goal.

However, | can provide a two-line
representation that captures the essence of
your query while taking into account
Aristotle’s logic:

1. dooper(x) - feeepy(x)
2. vX (dooper(x) > feeepy(x))

In this logical program, the first line is the
same as before, stating that if something is a
dooper, then it is feeepy.

The second line introduces a universal
quantifier (vx) and strengthens the
implication by stating that for all x, if x isa
dooper, then it must be feeepy. This line
represents the assertion that all dooopers are
feeepy.

While these two lines are not sufficient to
provide a conclusive answer based solely on
reasoning from them, they establish a logical
relationship between being a dooper and
being feeepy according to Aristotle’s
fragment of first-order logic. Further
inference rules and additional premises
would be required to draw definitive
conclusions.

Rsi%aw PROGRAMme
DEL

Ve(Dx — Xx)
P Va(Xx — Fx)

q Vx(Dx — Fx)
R : (P,q) — [(YIN]U, 9, 75 |oxs))
C : mylae —(YINU,9)

A= (L,T)

https://programme.hypotheses.org

A Simple Leibnizian £, Theorem

93 Variant1LeibnizsLaw

Here you must prove in second-order logic = £, a consequence of Leibniz's Law (a.k.a. The Identity of
Indiscernibles, nicely explained here), which says that any two things having exactly the same properties are
identical, and vice versa. Here's the consequence in meta-logic (informally put, that if two things a and b differ
with respect to a property, they can't be identical):

IX(XaA-Xb)Fya#b

We use a subscript of ‘2’ on the provability relation to indicate that the allowable inference schemata in your
HyperSlate® are those from second-order logic.

You're permittted to leave remaining use of the PC provability oracle in your completed proof. (No deadline for
now.)

Moronic LLM Content

@ BILLY

There's a property Arush has but Beegerish
lacks, and the latter object is happy.

CHATGPT
It seems like you're describing a situation
with two objects or entities, Arush and
Beegerish, and attributing properties to
them. However, without additional context,
it's difficult to provide a meaningful response.
Could you provide more details? Are these
concepts, people, or perhaps objects in a
specific game or story? Please also clarify
what you mean by “Beegerish lacks” and “the
latter object is happy”.

@ BILLY

Do the names ‘Arush’ and ‘Beegerish’ denote
more than one object?

CHATGPT
Based on the information provided, it's hard
to determine if ‘Arush’ and ‘Beegerish’ are
referring to single or multiple objects. These
names could refer to people, concepts, or
any number of things depending on context.
Could you please provide more information
or clarify the context in which these names
are being used?

Moronic LLM Content

‘=’ BILLY

There's a property Arush has but Beegerish
lacks, and the latter object is happy.

CHATGPT

It seems like you're describing a situation
with two objects or entities, Arush and
Beegerish, and attributing properties to
them. However, without additional context,
it's difficult to provide a meaningful respon

o

Could you provide more details? Are these
concepts, people, or perhaps objects in a

specific game or story? Please also clarify
what you mean by “Beegerish lacks” and “
latter object is happy”.

BILLY

Do the names ‘Arush’ and ‘Beegerish’ deng
more than one object?

@ BILLY

They are both as | said objects. You have all
the information you need to not only answer
the query, but to prove that your answer is
correct — assuming sufficient intelligence on
your part.

CHATGPT
From the information given, we can infer the
following:

CHATGPT

Based on the information provided, it's hard
to determine if ‘Arush’ and ‘Beegerish’ are
referring to single or multiple objects. These
names could refer to people, concepts, or
any number of things depending on context.
Could you please provide more information
or clarify the context in which these names
are being used?

Moronic LLM Content

BILLY
There's a property Arush has but Beegerish
lacks, and the latter object is happy.

CHATGPT

It seems like you're describing a situation
with two objects or entities, Arush and
Beegerish, and attributing properties to
them. However, without additional context,
it's difficult to provide a meaningful respon

Could you provide more details? Are these
concepts, people, or perhaps objects in a

specific game or story? Please also clarify
what you mean by “Beegerish lacks” and “
latter object is happy”.

BILLY
Do the names ‘Arush’ and ‘Beegerish’ deng
more than one object?

o
@ BILLY

They are both as | said objects. You have
the information you need to not only answ
the query, but to prove that your answer is
correct — assuming sufficient intelligence
your part.

CHATGPT

From the information given, we can infer t
following:

CHATGPT

Based on the information provided, it's hard
to determine if ‘Arush’ and ‘Beegerish’ are
referring to single or multiple objects. These
names could refer to people, concepts, or
any number of things depending on context.
Could you please provide more information
or clarify the context in which these names
are being used?

1. "Arush” is an object with a certain
property.

2. "Beegerish” is another object that lacks
this property.

3. "Beegerish” the latter object, is happy.

However, we don't have specific details
about the properties of these objects. But,
given that Beegerish is described as happy,
we can infer that the property Arush has and
Beegerish lacks could be ‘unhappiness’ or
not being happy. So to answer your question,
"Arush” and “Beegerish” do not denote more
than one object. Each name refers to one
object. The proof lies in the descriptors used:
the use of the words "has” and "lacks”
suggest singularity, as does the phrase “the
latter object,” which refers to Beegerish.

Moronic LLM Content

BILLY
There's a property Arush has but Beegerish
lacks, and the latter object is happy.

CHATGPT

It seems like you're describing a situation
with two objects or entities, Arush and
Beegerish, and attributing properties to
them. However, without additional context,
it's difficult to provide a meaningful respon

Could you provide more details? Are these
concepts, people, or perhaps objects in a

specific game or story? Please also clarify
what you mean by “Beegerish lacks” and “
latter object is happy”.

BILLY
Do the names ‘Arush’ and ‘Beegerish’ deng
more than one object?

o
@ BILLY

They are both as | said objects. You have
the information you need to not only answ
the query, but to prove that your answer is
correct — assuming sufficient intelligence
your part.

CHATGPT

From the information given, we can infer t
following:

CHATGPT

Based on the information provided, it's hard
to determine if ‘Arush’ and ‘Beegerish’ are
referring to single or multiple objects. These
names could refer to people, concepts, or
any number of things depending on context.
Could you please provide more information
or clarify the context in which these names
are being used?

1. "Arush” is an object with a certain
property.

2. "Beegerish” is another object that lacks
this property.

3. "Beegerish” the latter object, is happy.

However, we don't have specific details
about the properties of these objects. But,
given that Beegerish is described as happy,
we can infer that the property Arush has and
Beegerish lacks could be ‘unhappiness’ or
not being happy. So to answer your question,
"Arush” and “Beegerish” do not denote more
than one object. Each name refers to one
object. The proof lies in the descriptors used:
the use of the words "has” and "lacks”
suggest singularity, as does the phrase “the
latter object,” which refers to Beegerish.

RAGENCE PROG RAMme

RECHERCHE

There’s a property Arush has but
<IP)> .— Beegerish lacks, and the latter object
is happy.
< > . Do the names ‘Arush’ and ‘Beegerish’
q denote more than one object!?

L= (L,T) R : (P,q) — (YN[U, 0, 7(s)|cv(s))

C 7T(3)‘Oé(5) — (Y|N|U, 9)

https://programme.hypotheses.org

Execution Produces Answer to
Simple Leibnizian Query

HyperSlate® ~ ' Bezier ~ @b Public? @ VariantiLeibnizsLaw [HIGHER-ORDER-LOGIC]: Saved with @ symbols.

I
3x: X(a) A =X(b) ’_(l -
from {GIVENT1}
-(a=b)

from {WITNESS}
FOL-PROVABILITY not allowed in the final submission. Node 14. Computed in 125 (ms), size 74

assume
R(a) A <R(b)

from {WITNESS}

S
- PC + (Oracle) |
| [a= b]
3 -rRb)] from {SUPP FOR REDUCTIO}
from {WITNESS} -(a=b)
Node 6. Computed in 41 (ms), size 78 from {GIVEN1}

|

-R(a)
from {SUPP FOR REDUCTIOWITNESS}

PC (ac/e)

[[FaLsuv EER

from {SUPP FOR REDUCTIOWITNESS}

Node FALSUM. Computed in 150 (ms), size 107

3 elim’

|
[[FALSUM RGN

from {GIVEN1,SUPP FOR REDUCTIO} Y
z
PC + (Oracle) PC F (Oracle)
12 11
from {GIVEN1,SUPP FOR REDUCTIO} from {GIVEN1,SUPP FOR REDUCTIO} X
Node 12. Computed in 82 (ms), size 72 Node 11. Computed in 63 (ms), size 78

-(a=b)

from {GIVEN1}

Ingredients for Making a PGLP Program ...

On the Anatomy of a PGLP Program

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10
L'lf meta-level| language dx I‘ank(gb) =X {gb} —y U }: 0
L object-level language ¢ w 5

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10
L'lf meta-level| language dx I‘ank(gb) =X {gb} —y U }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = Py

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({¢} = A {¢} = 5) |—'u2 {gb})
L'lf meta-level| language Jzx rank(¢p) =z {o} Y UE ¢

L object-level language ¢ w 5 C,%

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics
Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Selection of language, inference schemata, plus formulae/meta-formulae = P + ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

L'g meta-level, language ({¢} = A {¢} = 5) |—'u2 {gb})
L'lf meta-level| language Jzx rank(¢p) =z {o} Y UE ¢

L object-level language ¢ w 5 C,%

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

+ ShadowReasoner

On the Anatomy of a PGLP Program

Linguistics

Ly metaievet angusge ({6} = A {0} 1) b, {0} 10

L'lf meta-level| language dx rank(qﬁ) =5 {gb} R VRS }: 0
L object-level language ¢ w 5

Inference
A collection of inference schemata. (For economy, see coming Example |.)

Semantics

Reasoning-semantic; wholly inferentialist (after all, what's the semantics of
deduction over meta-level| formulae??).

Slutten

Slutten

Part Il

Review of All Inference Rules/
Schemata in PropCalc = &,

