FOL II: universal intro

Selmer Bringsjord

Rensselaer AI & Reasoning (RAIR) Lab
Department of Cognitive Science
Department of Computer Science
Lally School of Management
Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA

Intro to Formal Logic (& AI) 2/18/2025

Logic-&-Al In The News

BUSINESS

Meta's AI-Powered Ray-Bans Are **Life-Enhancing for the Blind**

Tech giant makes smart specs for general public; visually impaired owners use them for everyday tasks, though critics cite safety concerns

Allison Pomeroy wearing her Meta smart glasses, alongside her husband, DJ Pomeroy. (PHOTO: DJ POMEROY)

By Sarah E. Needleman Follow

Feb 17, 2025 05:30 a.m. ET

Re Test I ...

(More-Forgiving) Grading Scheme

A (4): | V ... V 6/6

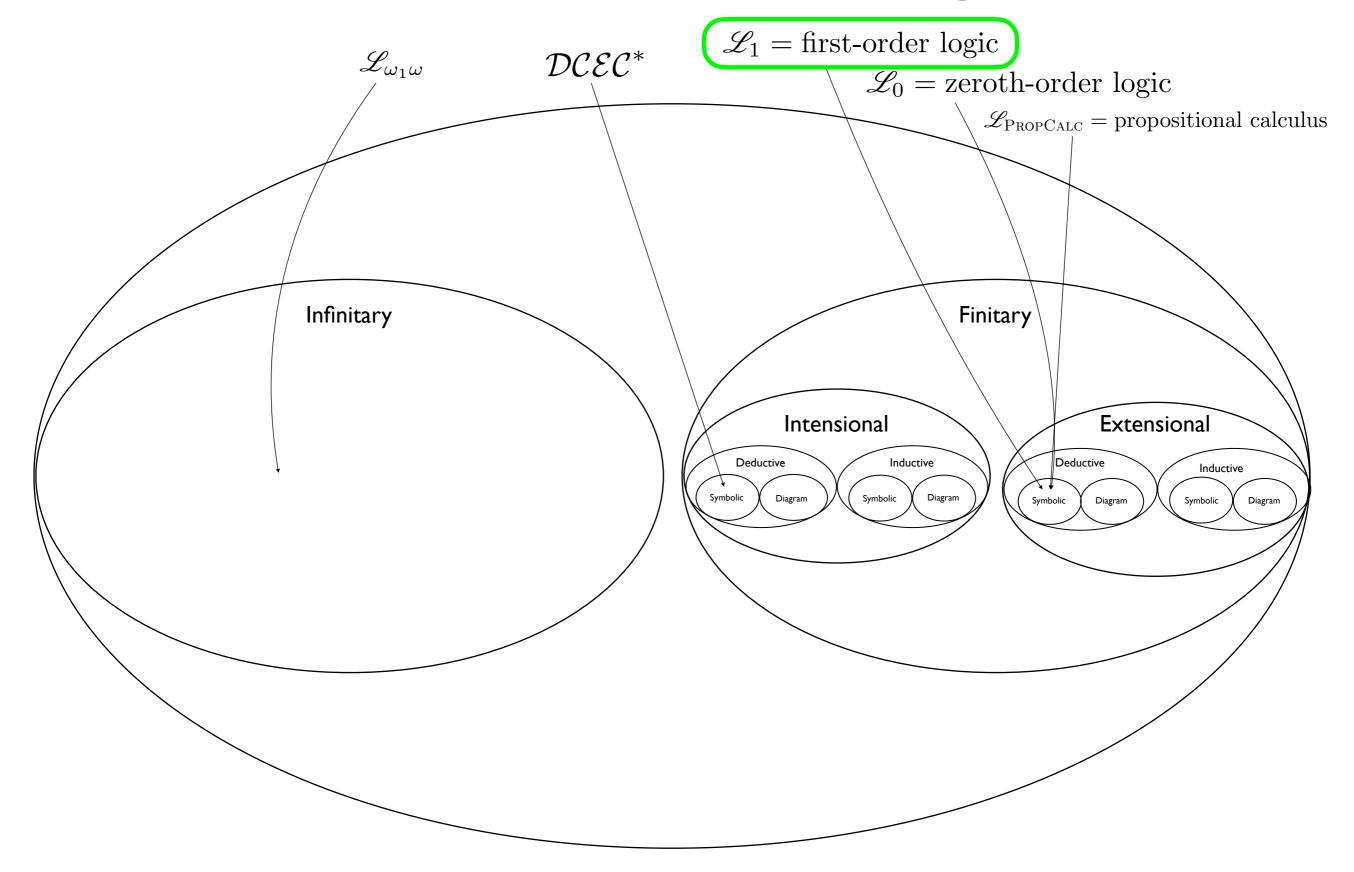
A+: (5) 6/6

(More-Forgiving) Grading Scheme

A+: (5) 6/6

Part 2 Today for Help etc; remarks on DeMorgan's Theorem.

The Universe of Logics



Next New (Not-So-Easy!) Inference Rule in FOL

Next New (Not-So-Easy!) Inference Rule in FOL

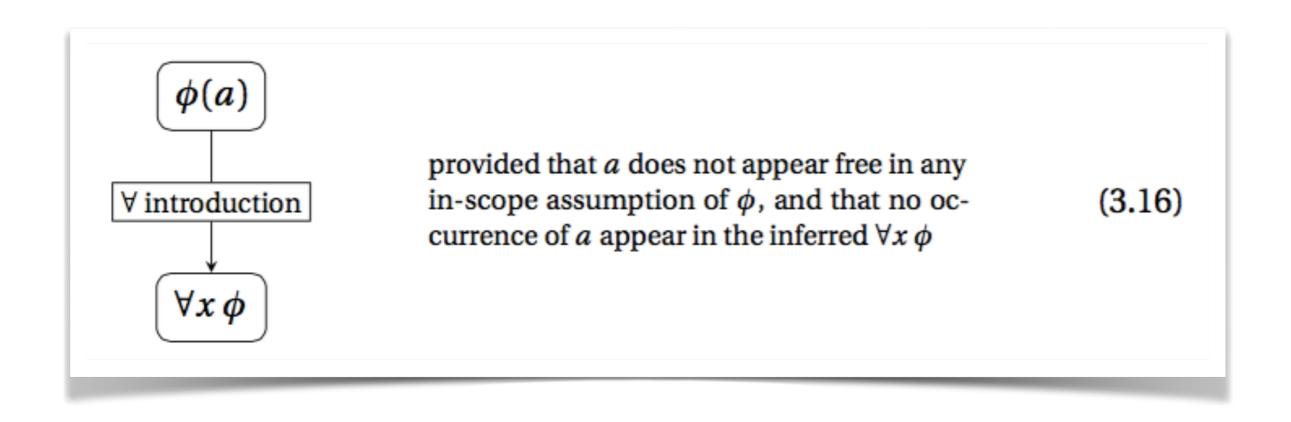
universal introduction

Next New (Not-So-Easy!) Inference Rule in FOL

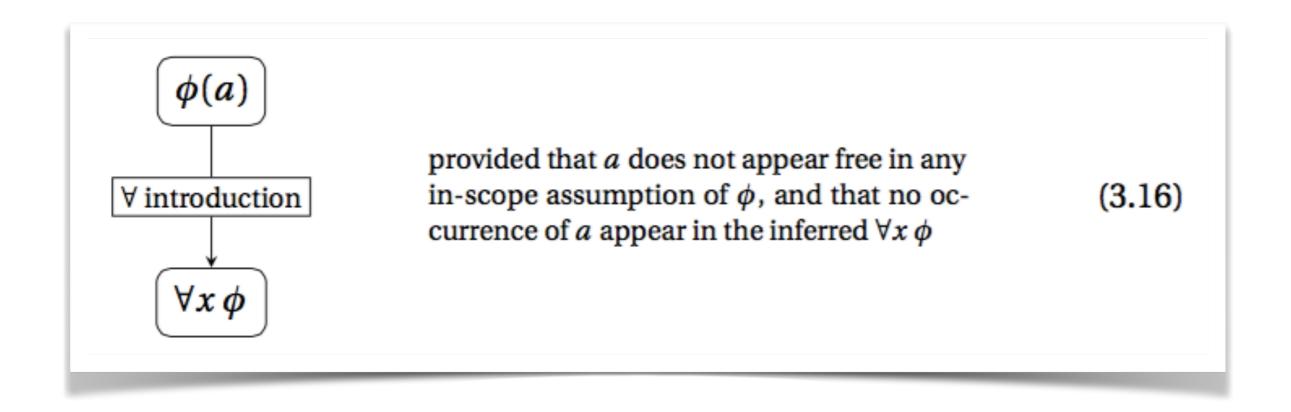
- universal introduction
 - If something a is an R, and the constant/name a is genuinely arbitrary, then we can deduce that everything is an R.

The Inference Schema

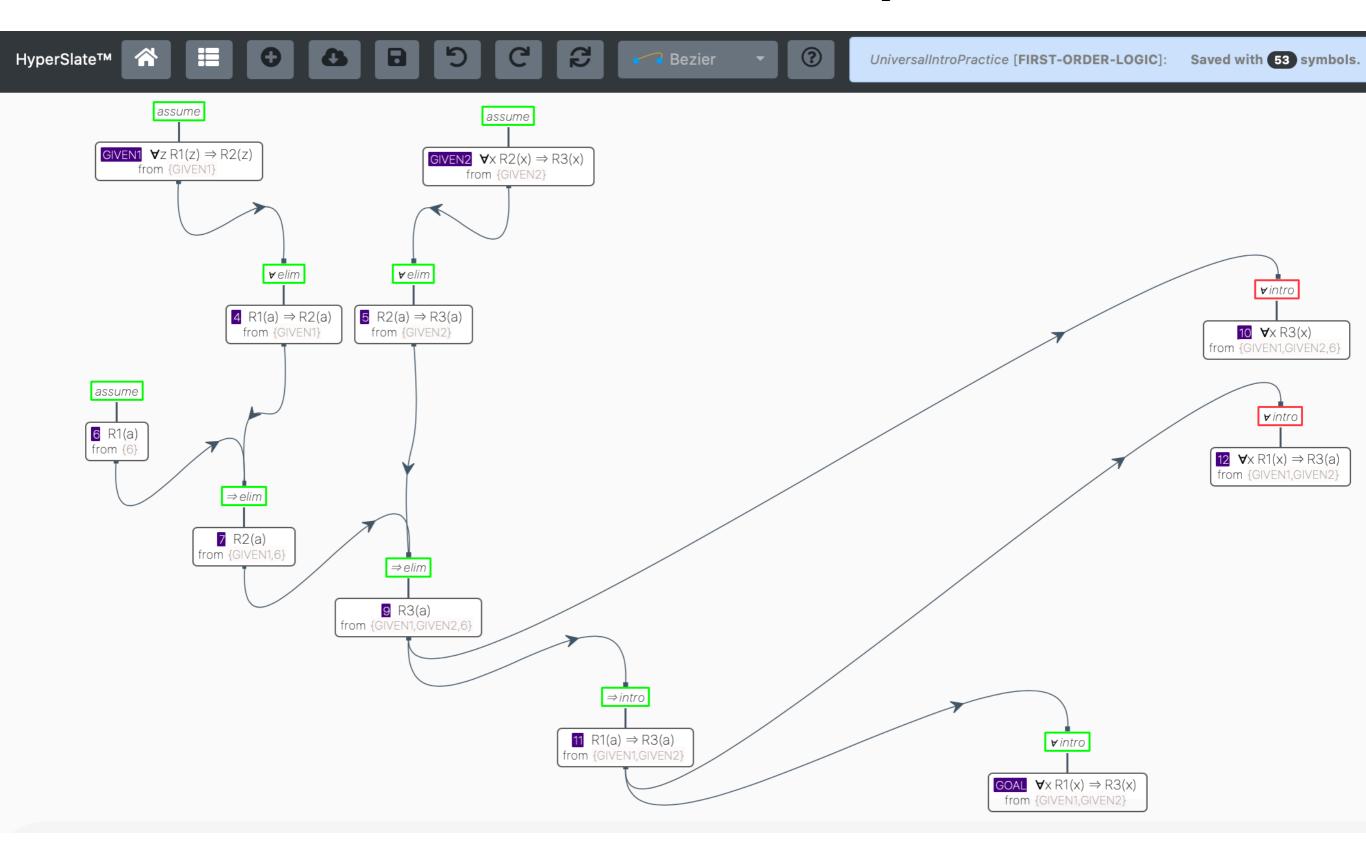
The Inference Schema

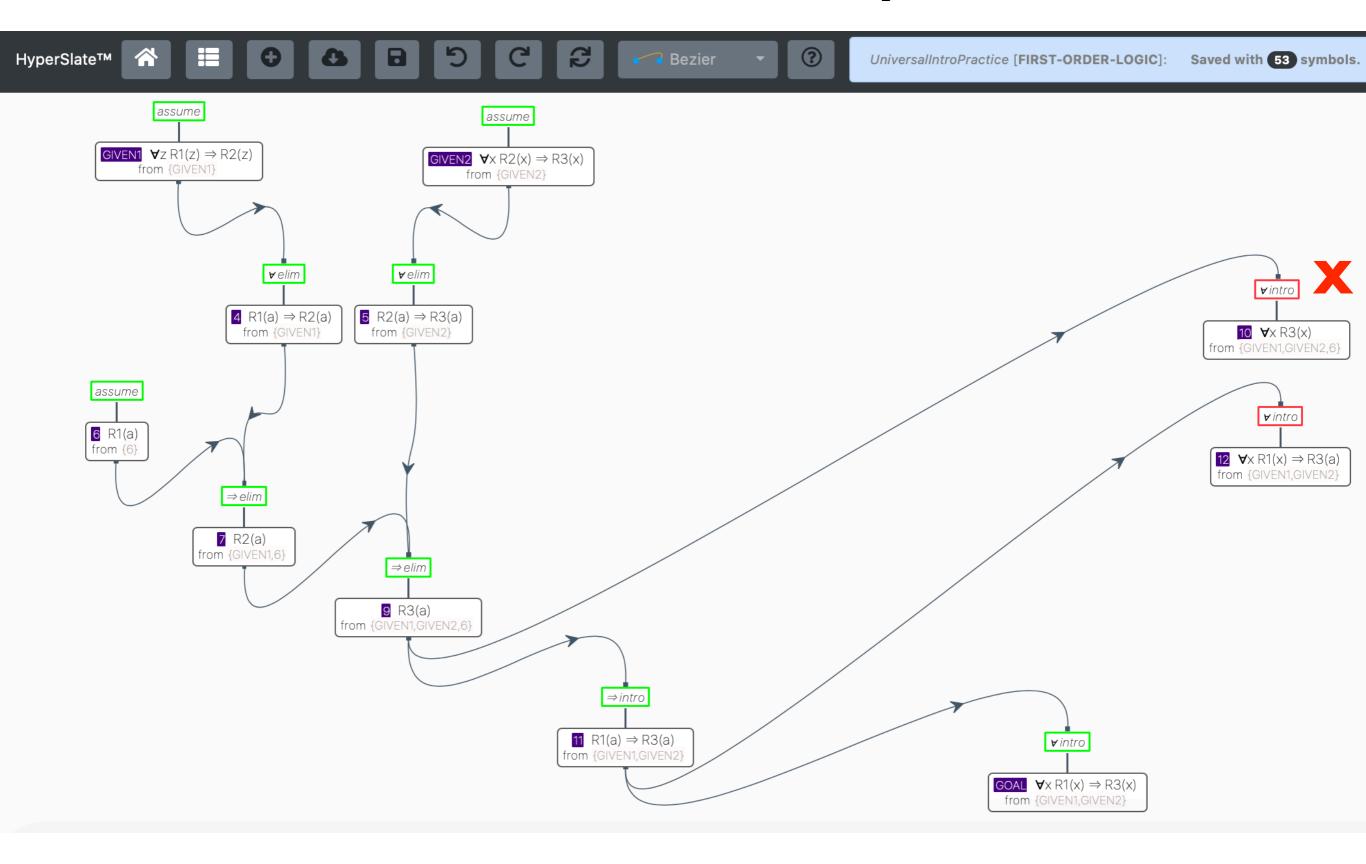


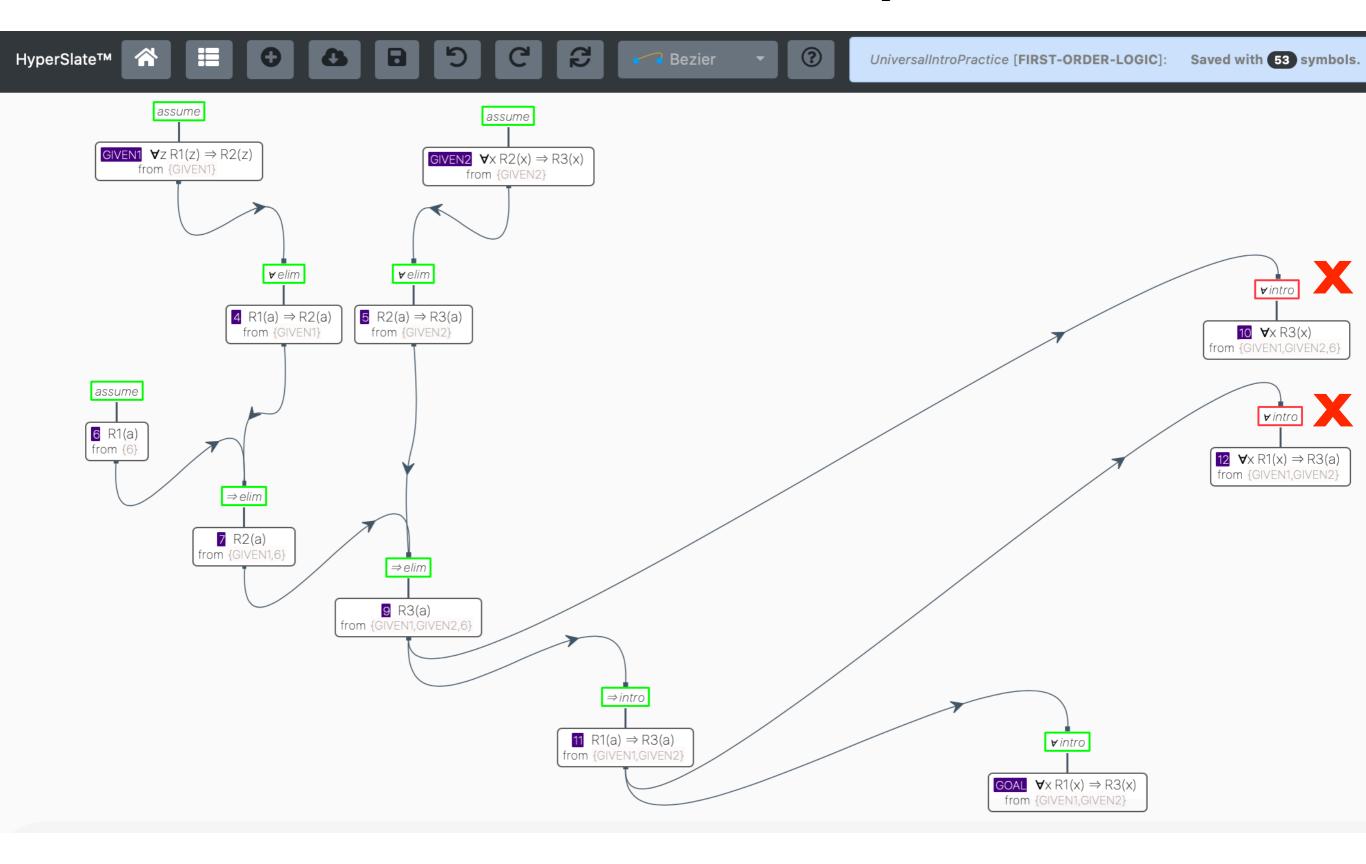
The Inference Schema

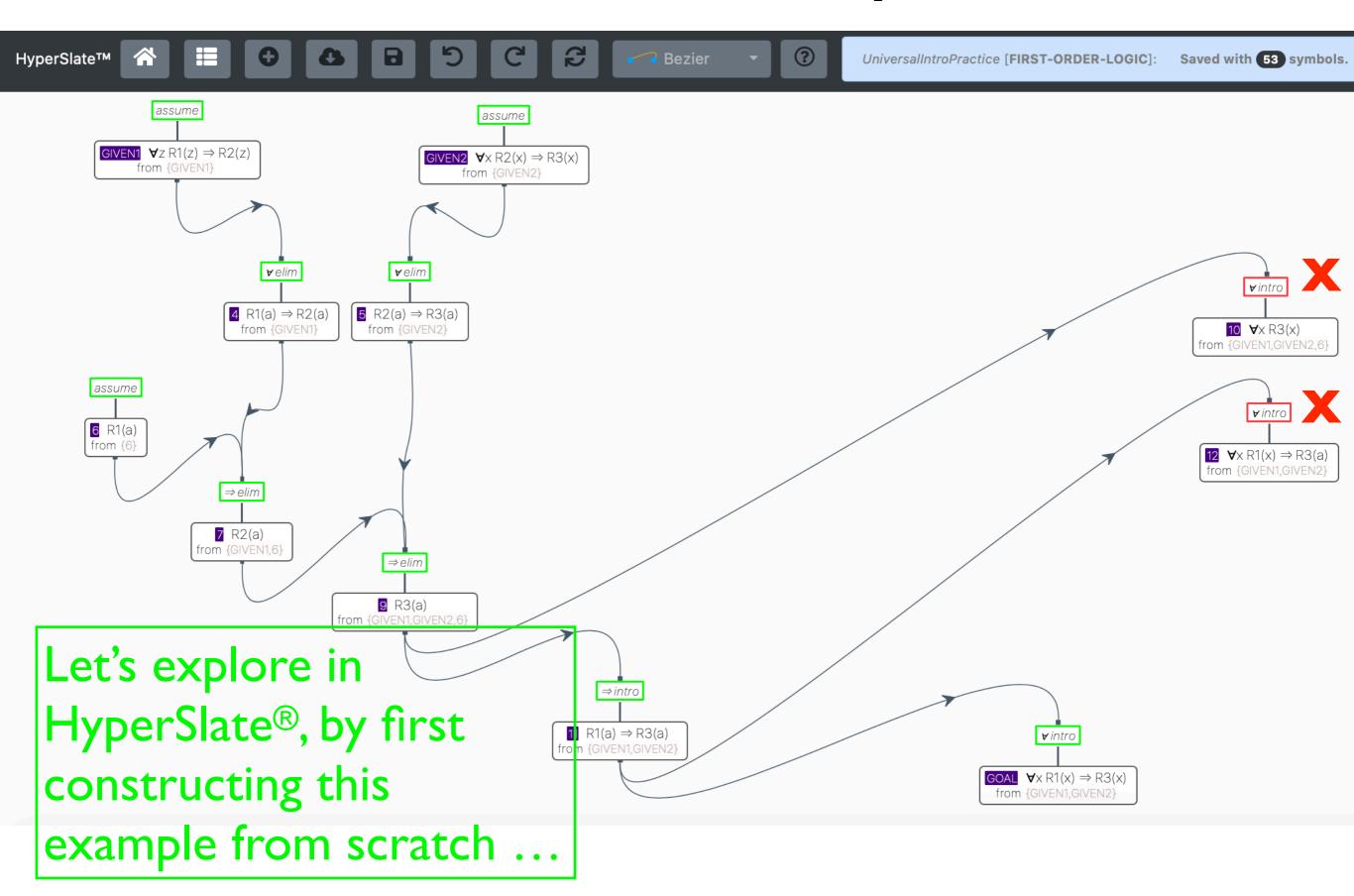


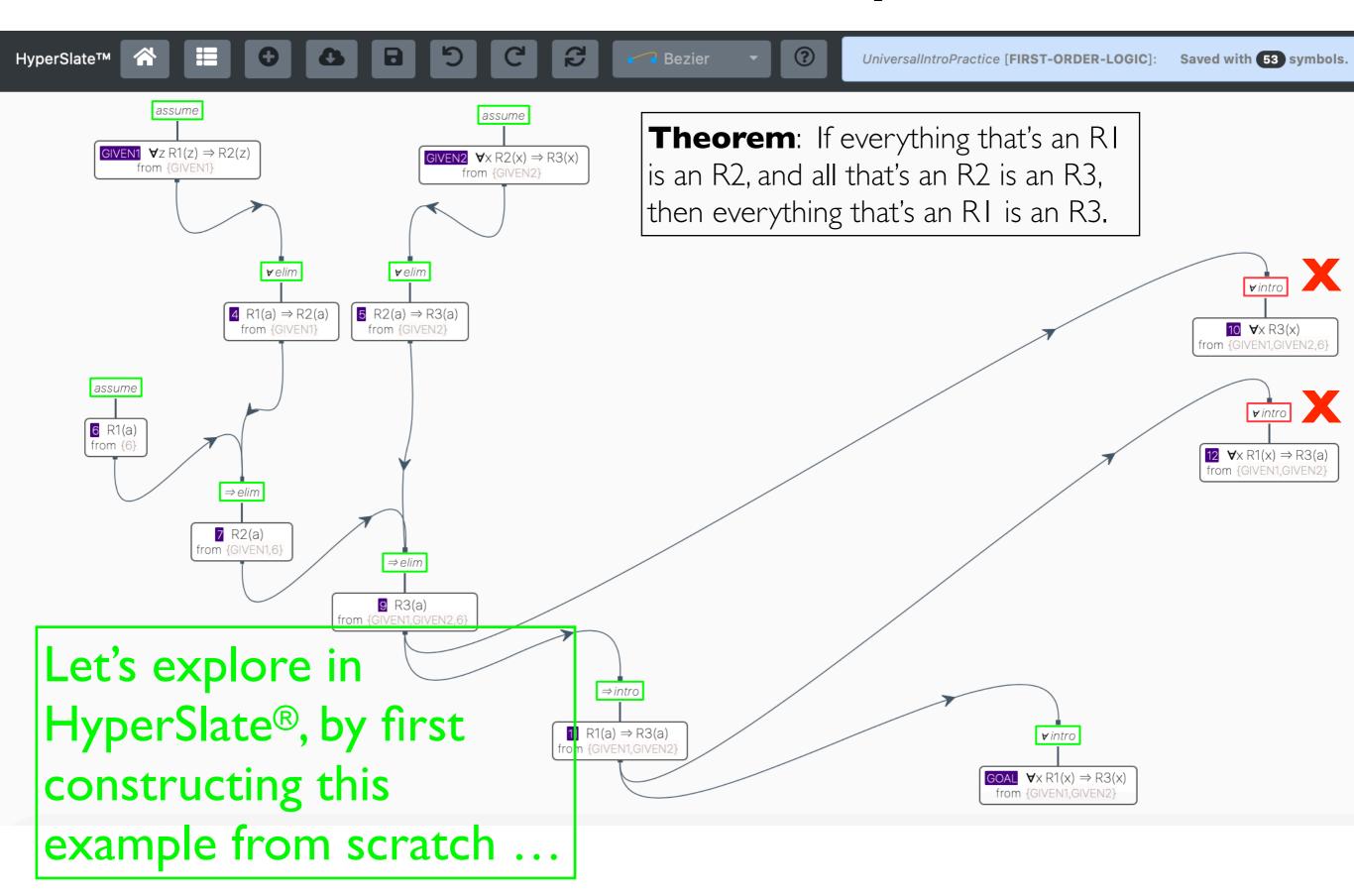
(Why the provisos?)

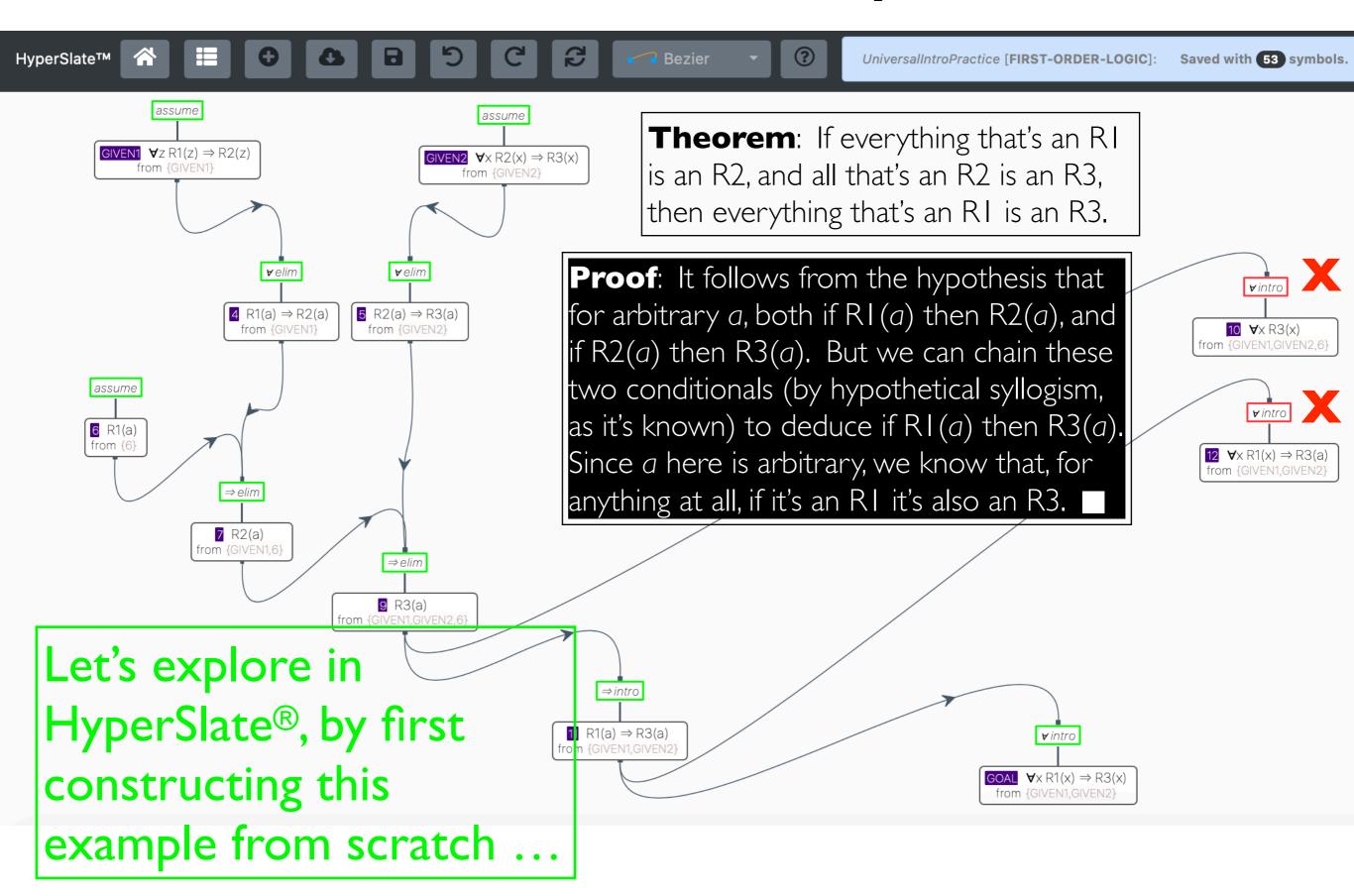


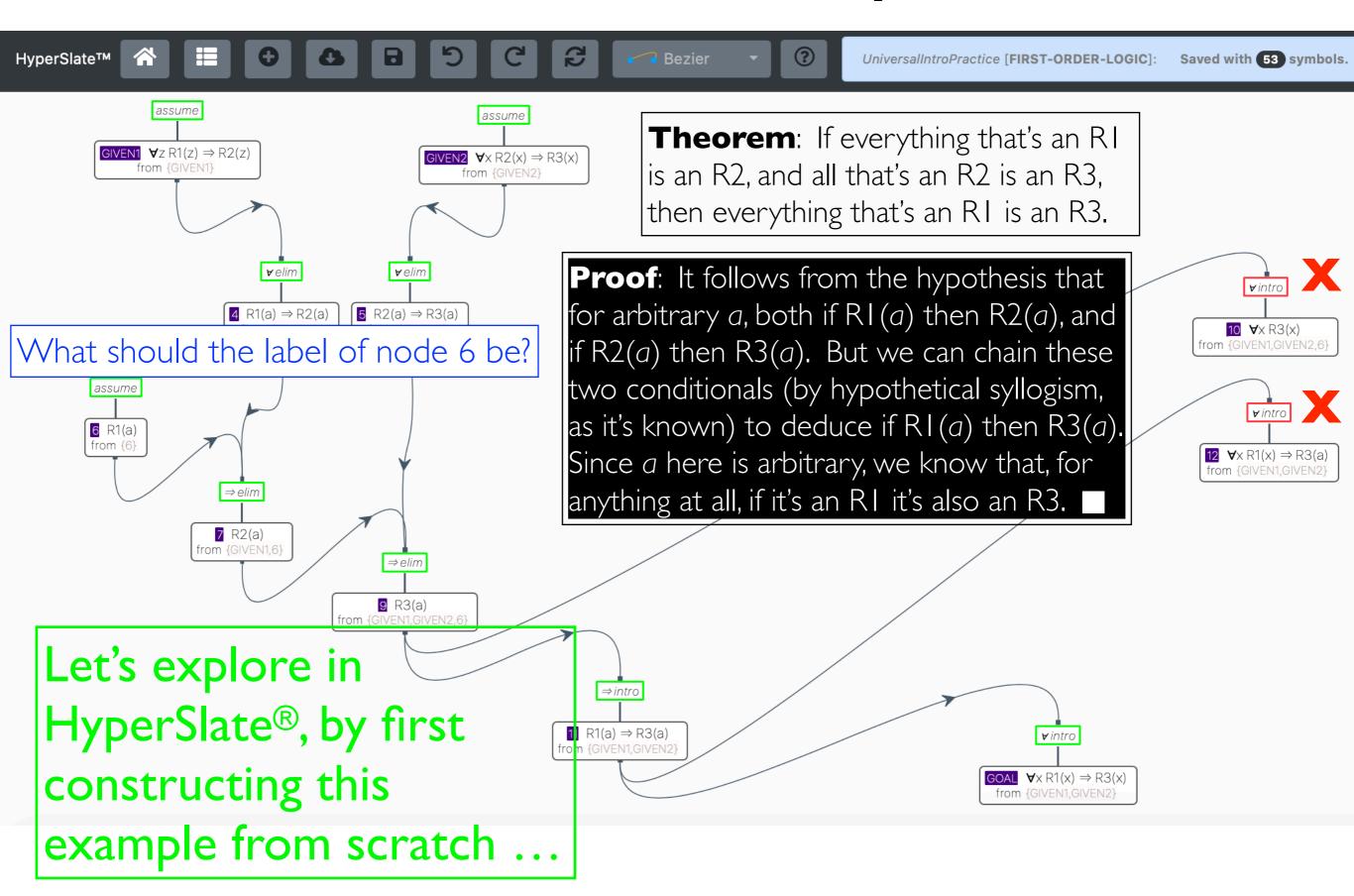












$$\{\forall x(R(x) \leftrightarrow S(x)), \forall xR(x)\} \vdash \forall xS(x)\}$$
?

$$\{\forall x(R(x) \leftrightarrow S(x)), \forall xR(x)\} \vdash \forall xS(x)\}$$
?

```
\{\forall x [\texttt{Norsk}(x) \to \forall y (\texttt{Svensk}(y) \to \texttt{Smarter}(x,y))]\} \vdash \forall x,y [(\texttt{Norsk}(x) \land \texttt{Svensk}(y)) \to \texttt{Smarter}(x,y)] ~\ref{eq:special} ~\ref{eq:special}
```

$$\{\forall x(R(x) \leftrightarrow S(x)), \forall xR(x)\} \vdash \forall xS(x)\}$$
?

```
 \{ \forall x [\mathtt{Norsk}(x) \to \forall y (\mathtt{Svensk}(y) \to \mathtt{Smarter}(x,y))] \} \vdash \forall x, y [(\mathtt{Norsk}(x) \land \mathtt{Svensk}(y)) \to \mathtt{Smarter}(x,y)] \ ?   \{ \forall x, y [(\mathtt{Norsk}(x) \land (\mathtt{Svensk}(y)) \to \mathtt{Smarter}(x,y)], \\ \forall x, y [(\mathtt{Svensk}(x) \land (\mathtt{Dansk}(y)) \to \mathtt{Smarter}(x,y)] \} \vdash \\ \forall x, y [(\mathtt{Norsk}(x) \land (\mathtt{Dansk}(y)) \to \mathtt{Smarter}(x,y)] \ ?
```

Hvis du forstår det, kan du bevise det.

Part II: Hands-on: DeMorgan's ...

Part II: Hands-on: DeMorgan's ...

e.g.
$$\{ \neg (\phi \lor \psi) \} \vdash \neg \phi \land \neg \psi$$

Part II: Hands-on: DeMorgan's ...

e.g.
$$\{ \neg (\phi \lor \psi) \} \vdash \neg \phi \land \neg \psi$$

e.g.
$$\{ \neg (\phi \land \psi) \} \vdash \neg \phi \lor \neg \psi$$

e.g.
$$\{ \neg (\phi \land \psi) \} \vdash \neg \phi \lor \neg \psi$$

ChatGPT 40 >

No. First, this isn't purely natural deduction (no DeMorgan's is part of natural deduction). Second, it's not a formal proof.

You're right! Let's construct a **pure natural deduction proof** in a formal system where the formulae are written in **S-expression format** and no derived rules (like De Morgan's) are used.

Statement to Prove

\[\neg (P \wedge Q) \vdash \neg P \vee \neg Q \]

0 ChatGPT 40 > **Natural Deduction Proof** 1. Premise: $\neg (P \land Q)$ (not (and P Q)) 2. Assumption for Reductio: $P \wedge Q$ (assume (and P Q)) 3. Conjunction Elimination: Extract P from $(and-elim-left (and P Q)) \rightarrow P$ 4. Conjunction Elimination: Extract Q from $P \wedge Q$ $(and-elim-right (and P Q)) \rightarrow Q$ 5. **Contradiction**: Since we assumed $P \wedge Q$ and we have $\neg (P \land Q)$, we derive a contradiction. (contradiction (not (and P Q)) (and P Q)) 6. Negation Introduction: Conclude $\neg (P \land Q)$ implies $\neg P \lor \neg Q$, using **Disjunction Introduction.** Assume P and derive contradiction → conclude $\neg P$. • Assume Q and derive contradiction \rightarrow conclude $\neg Q$. • Use **Disjunction!** J. duction to conclude $\neg P \lor \neg Q$.

This is positively scandalous.

```
(not (and P Q))
2. Assumption for Reductio: P ∧ Q (assume (and P Q))
3. Conjunction Elimination: Extract P from P ∧ Q (and-elim-left (and P Q)) → P
```

4. Conjunction Elimination: Extract Q from $P \wedge Q$

 $(and-elim-right (and P Q)) \rightarrow Q$

5. Contradiction: Since we assumed $P \wedge Q$ and we have $\neg (P \wedge Q)$, we derive a contradiction.

(contradiction (not (and P Q))
(and P Q))

- 6. **Negation Introduction**: Conclude $\neg(P \land Q)$ implies $\neg P \lor \neg Q$, using **Disjunction Introduction**.
 - Assume P and derive contradiction → conclude ¬P.
 - Assume Q and derive contradiction → conclude ¬Q.
 - Use **Disjunction!** \downarrow **duction** to conclude $\neg P \lor \neg Q$.

This is positively scandalous.

ChatGPT 40 >

```
(assume (not (and P Q))) ; Premise: ¬(P ∧ Q)

(assume P) ; Assume P for reductio
    (assume Q) ; Assume Q for reductio
        (and-intro P Q) ; P ∧ Q
        (contradiction (not (and P Q)) (and P Q)) ; Contradiction!
        (not-intro Q (and P Q) (not (and P Q))) ; ¬Q
        (or-intro-right (not P) (not Q)) ; ¬P ∨ ¬Q
        (not-intro P (and P Q) (not (and P Q))) ; ¬P
        (or-elim (not P) (not Q)) ; ¬P ∨ ¬Q

(or-elim (not P) (not Q) (or (not P) (not Q))) ; Conclusion
```

- Assume Q and derive contradiction \rightarrow conclude $\neg Q$.
- Use **Disjunction!** \downarrow **duction** to conclude $\neg P \lor \neg Q$.

This is positively scandalous.

```
(not (and P Q))
2. Assumption for Reductio: P ∧ Q (assume (and P Q))
3. Conjunction Elimination: Extract P from P ∧ Q (and-elim-left (and P Q)) → P
```

4. Conjunction Elimination: Extract Q from $P \wedge Q$

 $(and-elim-right (and P Q)) \rightarrow Q$

5. Contradiction: Since we assumed $P \wedge Q$ and we have $\neg (P \wedge Q)$, we derive a contradiction.

(contradiction (not (and P Q))
(and P Q))

- 6. **Negation Introduction**: Conclude $\neg(P \land Q)$ implies $\neg P \lor \neg Q$, using **Disjunction Introduction**.
 - Assume P and derive contradiction → conclude ¬P.
 - Assume Q and derive contradiction → conclude ¬Q.
 - Use **Disjunction!** \downarrow **duction** to conclude $\neg P \lor \neg Q$.

This is positively scandalous

ChatGPT o3-mini-high >

```
0
```

```
\neg(p \land q)
                                          Premise
1.
                                            Assumption [for indirect proof]
2.
         Assume: \neg(\neg p \ V \ \neg q)
3.
                                             Assumption
              Assume: ¬p
                                            v-Introduction (from 3, left)
              ¬p V ¬q
5.
                                            Contradiction (from 2 and 4)
                                            RAA, discharging 3-5
6.
7.
                                            Assumption
              Assume: q
                                          Λ-Introduction (from 6 and 7)
8.
              p \wedge q
                                            Contradiction (from 1 and 8)
9.
                                          RAA, discharging 7-9
10.
                                        v-Introduction (from 10, right)
11.
          ¬p V ¬q
                                       Control tion (from 2 and 11)
12.
                                    RAA, di \vee rging 2-12
13.
     ¬p V ¬q
```

- Assume P and derive contradiction → conclude ¬P.
- Assume Q and derive contradiction → conclude ¬Q.
- Use **Disjunction!** \downarrow **duction** to conclude $\neg P \lor \neg Q$.