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Logic-&-Al In The News

BUSINESS

Meta’s AI-Powered Ray-Bans Are
Life-Enhancing for the Blind

Tech giant makes smart specs for general public;
visually impaired owners use them for everyday
tasks, though critics cite safety concerns

Allison Pomeroy wearing her Meta smart glasses, alongside her
husband, DJ Pomeroy. (PHOTO: DJ POMEROY)

By Sarah E. Needleman
Feb17,20250530am.ET
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Part 2 Today for Help etc; remarks on DeMorgan’s Theorem.



The Universe of Logics

2 = first-order logic

L7 ) i
) DC\gC £y = zeroth-order logic

‘ LProrCarc = propositional calculus
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Next New (Not-So-Easy!)
Inference Rule in FOL

@® universal introduction

® |f something a is an R, and the

constant/name a is genuinely
arbitrary, then we can deduce

that everything is an R.



The Inference Schema



The Inference Schema

Y introduction

Vx ¢

provided that a does not appear free in any
in-scope assumption of ¢, and that no oc-
currence of a appear in the inferred Vx ¢

(3.16)



The Inference Schema

Y introduction

Vx ¢

provided that a does not appear free in any
in-scope assumption of ¢, and that no oc-
currence of a appear in the inferred Vx ¢

(Why the provisos?)

(3.16)



universal intro Example/Tutorial

HyperSlate™ UniversalintroPractice [FIRST-ORDER-LOGIC]:  Saved with &) symbols.

VZRI(z) = R2(2) Vx R2(x) = R3(x)
rom from
velim

Vx R3(x)
from ‘ N2t

[ R1(a) = R2(a) J [ R2(a) = R3(a) J

from from

vintro

[ Vx R1(x) = R3(a) ]

from

[ R1(a) = R3(a)

from

vintro

Vx R1(x) = R3(x)

from
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universal intro Example/Tutorial

HyperSlate™ ¢ ] UniversalintroPractice [FIRST-ORDER-LOGIC]:  Saved with &) symbols.

VZRI(z) = R2(2) Vx R2(x) = R3(x)
rom \ from |
velim x
VrﬂMO

I I
[ R1(a) =>R2(a)] [ R2(a )=>R3(a)]

from from

M vxR3(x
from

X
[ Vx R1(x) = R3(a ]

from

vintro

[ R1(a) = R3(a)
from ' |

VX R1(x) = R3(x)

from




universal intro Example/Tutorial

HyperSlate™ : — Bezier v UniversalintroPractice [FIRST-ORDER-LOGIC]:  Saved with &) symbols.

[ VZRI(z) = R2(2) ] [ Vx R2(x) = R3(x) ]
from {C | from \

rrom vVEN

[ VX R1(x) = R3(a)

Let’s explore in —

HyperSlate®, by first
constructing this
example from scratch ...

Vx R1(x) = R3(x)
from {GIVE! VEN




universal intro Example/Tutorial

HyperSlate™ : ~— Bezier v UniversalintroPractice [FIRST-ORDER-LOGIC]:  Saved with &) symbols.

v R2 — Theorem: [f everything that's an R
s an R2, and all that’'s an R2 is an R3,

k/l N then everything that's an R is an R3.

vr’rro )(
. R1 =>R2 l R2 =>R3
Vx R3(x)
from | N2,

O\VEN VzR

Vx R1(x) = R3(a)

from VEN

Let’s explore in —

H)’peI”S|ate®, b)’ ﬁl’St [frgnme)ém(a) ]
constructing this
example from scratch ...

vintro

Vx R1(x) = R3(x)
from VEI VEN




universal intro Example/Tutorial

HyperSlate™ UniversalintroPractice [FIRST-ORDER-LOGIC]:  Saved with &) symbols.

assume

| assume . . ’
VZR1(z) = R2(2) ] [ v R|2-(><j| o ] Theorem. i ever’ythmg thlat s an Rl
is an R2, and all that's an R2 is an R3,
then everything that's an R is an R3.
I I Proof: It follows from the hypothesis that

[

R~ | (20 - | for arbitrary a, both if Rl (a) then R2(a), and

it R2(a) then R3(a). But we can chain these
wo conditionals (by hypothetical syllogism, _ X
as it's known) to deduce if Rl (a) then R3(a).
Since a here is arbitrary, we know that, for By
anything at all, if it's an Rl it's also an R3. W

> INro

il R1(a) = R3(a)
fron

vintro

Vx R1(x) = R3(x)
from
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HyperSlate™ UniversalintroPractice [FIRST-ORDER-LOGIC]:  Saved with &) symbols.

assume

| | | . ,
verm = | | Theorem. It ever’ythmg thlats an R
is an R2, and all that's an R2 is an R3,

from

LA N then everything that's an R is an R3.

Proof: It follows from the hypothesis that
[8 Rie) = R2) | [B R2(a) = R3e) | for arbitrary a, both if RI(a) then R2(a), and
What should the label of node 6 be?| |V RIS ANACI() R TIAVY ReclsWa st aligleHe
wo conditionals (by hypothetical syllogism, X
as it's known) to deduce if Rl (a) then R3(a).
Since a here is arbitrary, we know that, for By
anything at all, if it's an Rl it's also an R3. W

intro

Vx R1(x) = R3(x)

from

v

il R1(a) = R3(a)
fron
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Suggested Practice Problems in HyperSlate®!
{Vx(R(x) <> S(x)), VxR(x)} F VxS(x)} ?

{Vx[Norsk(x) — Vy(Svensk(y) — Smarter(x,y))]} I Vx, y[(Norsk(x) A Svensk(y)) — Smarter(x,y)] ?

{Vx,y|(Norsk(x) A (Svensk(y)) — Smarter(x,y)|,
Vx,y|(Svensk(x) A (Dansk(y)) — Smarter(x,y)|}
Vx,y|(Norsk(x) A (Dansk(y)) — Smarter(x,y)| ?






Hyvis du forstar det, kan
du bevise det.
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Part I: Slutten — for i dag.

Part ll: Hands-on: DeMorgan’s ...

eg { @V} gAYy
eg { (@AY} E @V Yy
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eg. {7 (@AY} E -V Yy

ChatGPT 40 > 4

No. First, this isn't purely natural
deduction (no DeMorgan'’s is part
of natural deduction). Second, it's
not a formal proof.

You're right! Let's construct a pure natural
deduction proof in a formal system where the
formulae are written in S-expression format
and no derived rules (like De Morgan'’s) are
used.

Statement to Prove

\[
\neg (P \wedge Q) \vdash \neg P \vee \neg Q

\
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eg. {7 (@AY} E -V Yy

— ChatGPT 40 > Z

CN

Natural Deduction Proof

1. Premise: (PN Q)
(not (and P Q))

2. Assumption for Reductio: P\ Q
(assume (and P Q))

3. Conjunction Elimination: Extract P from
PAQ

1 (and-elim-left (and P Q)) > P

4. Conjunction Elimination: Extract € from
1 PAQ

(and-elim-right (and P Q)) > Q

| 5. Contradiction: Since we assumed PA Q
and we have “(PA Q) we derive a
contradiction.

(contradiction (not (and P Q))

{ (and P Q))

6. Negation Introduction: Conclude
\ ~(PA Q) implies ~PV —Q, using
\ Disjunction Introduction.

- Assume P and derive contradiction =
conclude —P.

. Assume @ and derive contradiction -
conclude Q.

- Use Disjunction! |, duction to
conclude ~PV ~Q,




eg. {7 (@AY} E -V Yy

This is positively scandalous.

I PTEIMMISET (T 7Y <7
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2. Assumption for Reductio: P\ Q
(assume (and P Q))

3. Conjunction Elimination: Extract P from
PAQ

1 (and-elim-left (and P Q)) > P

{ 4. Conjunction Elimination: Extract € from
1 PAQ
(and-elim-right (and P Q)) > Q

| 5. Contradiction: Since we assumed PA Q
and we have “(PA Q) we derive a
contradiction.

(contradiction (not (and P Q))

{ (and P Q))

6. Negation Introduction: Conclude
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- Assume P and derive contradiction =
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conclude Q.

- Use Disjunction! |, 'duction to
conclude ~PV ~Q,
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eg. {7 (@AY} E -V Yy

This is positively scandalous.

DTOoOrmiTCTo

ChatGPT 40 >

(assume (not (and P Q))) ; Premise: =(P A Q)
(assume P) ; Assume P for reductio

(assume Q) ; Assume Q for reductio
(and-intro P Q) ; P A Q

(contradiction (not (and P Q)) (and P Q)) ; Contradiction!
(not-intro Q (and P Q) (not (and P Q))) ; -Q
(or-intro-right (not P) (not Q)) ; -P v -Q
(not-intro P (and P Q) (not (and P Q))) ; =P
(or-intro-left (not P) (not Q)) ; -P v -Q
(or-elim (not P) (not Q) (or (not P) (nr* Q))) ; Conclusion

N2

. Assume @ and derive contradiction -
conclude Q.

- Use Disjunction! |, 'duction to
conclude PV =@,
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eg. {7 (@AY} E -V Yy

‘Thic i< nosgitivelv ccandaloiig ‘

Assume: =(-p VvV -q)
| Assume: -p

|

I

| | -p Vv g
I "

| P

| | Assume: ¢
| | pPAQ
I

| -q

|  -p Vv -q
1

-p VvV

ChatGPT o03-mini-high >

Premise

Assumption [for indirect proof]

Assumption

v-Introduction (from 3, left)
Contradiction (from 2 and 4)
RAA, discharging 3-5

Assumption

A-Introduction (from 6 and 7)
Contradiction (from 1 and 8)

RAA, discharging 7-9

v-Introduction (from 10, right)
Contrr ~tion (from 2 and 11)

RAA, di. ¥ rging 2-12

- Assume P and derive contradiction =

conclude —P.

. Assume @ and derive contradiction -

conclude Q.

- Use Disjunction! |, 'duction to

conclude ~PV —Q,.

a
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