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Logic-and-Al in the news



Apropos of Selmer’s Claim re. Commodification

TECH Following

Silicon Valley Is Raving About a
Made-in-China AI Model

DeepSeek is called ‘amazing and impressive’
despite working with less-advanced chips

A chatbot app developed by the Chinese Al company DeepSeek,
(PHOTO: RAFFAELE HUANG/WSJ)

By Raffaele Huang

Updated Jan 26,2025 12:00am.ET

Listen to this article
7 minutes

SINGAPORE—A Chinese artificial-intelligence
company has Silicon Valley marveling at how its

programmers nearly matched American rivals

despite using inferior chips.




Logistics, again ...
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Your code for starting the registration process is:

Ihe emall address you enter Is case-sensitive!
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The Starting Code Purchased in Bookstore Should
By Now’ve Been Used to Register & Subsequently Sign In

First two Prop-Calc Practice problems:
switching_conjuncts_fine, switching_disjuncts_fine

Your code for starting the registration process is:

To access HyperGrader, HyperSlate, the license agreement,
and to obtain the textbook LAMA-BDLA, go to::

https://rpi.logicamodernapproach.com
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E-Housekeeping Pts (again)

® Must input your RIN. (This is your
“University ID.”)

® Make sure OS fully up-to-date.
® Make sure browser fully up-to-date.
® Chrome best (but | use Safari).

® Always work in the same browser window
with multiple tabs; must do this with email
and HyperGrader® & HyperSlate®.
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Last time we introduced and
and lauded the power of
oracles, and questions ...
and now ... picking up
where we left off ...
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The Universe of Logics

2 = first-order logic

L7 ) i
) DC\gC £y = zeroth-order logic

‘ LProrCarc = propositional calculus
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itself is at bottom a simple recursive one. (There are now numerous variants, but we ignore this
for efficiency.) The algorithm is to receive an array of ordered objects, for example

B 6N EDEEDE E)

and to then produce as output the sorted version of this input, which in this case is:

EEEEEEE @

So, what’s the algorithm? In order to answer this question, we can’t avoid resorting to what
we can call embodiments or tokens of the general and abstract type Q.° This terminology, and the
associated concrete practice, is easy to grasp. For an example, we give one high-level embodimen-
t/token Q; of Q that views the algorithm as a three-stage one.!? Before supplying the example in
question, we draw the reader’s attention to what we just did with a bit of suggestive notation: We
used “hat” O to indicate that what is being referred to an an embodiment of the thing O (in this
case, of course, an algorithm). Hence, the hat in ‘Ql’ says that we have here an embodiment of the
algorithm @ itself. Very well, and now to the embodiment in question itself:

I Pick the rightmost element in the array as the pivot.
II Partition the array so that all elements in the array less than the pivot are before it, and
all elements greater than the pivot are placed after it.

III Recursively apply both I and II to the sub-array now before the pivot, as well as to the
sub-array now after the pivot.

This is said to be ‘high-level’ for obvious reasons. 0, doesn’t tell us how to carry out parti-
tioning, and it relies on an understanding of what recursion means — or at least what it means in
this context. But no worries: Stage II can be further specified by saying that we simply move to
the left one entry at a time, and decide whether to move an entry to the right of our pivot, or else
leave it where it is. And how to decide? Simple: If what we find is greater than our pivot, append
it to whatever sub-sequence is to the right of the pivot; otherwise just leave what we find alone.
Using a double-box to indicate our pivot, the result of executing Stage I and then Stage II in 9
on the initial input array will result in this configuration:

(B @6 [E 6 m @ m )

Now the algorithm calls for Stage III in Ql, which means that the sub-array to the left of
with |3 | as the pivot of this sub-array is processed; ditto for the sub-array to the right of with

@ as the pivot of this sub-array. In the case of the right sub-array, here’s the result of running
Stage I, which is to be passed to Stage II to be processed (we once again indicate the pivot by a
double-box):

(8 @ @ m [l

Stage II applied to the input to it immediately above then results in this:
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We continue in this way until we reach sub-arrays composed of but one element, which are by
definition sorted, and hence processing is guaranteed to terminate.

It should be obvious to the reader that an infinite number of embodiments or tokens of Quicksort
are available.!! Many of these embodiments call upon programming languages used today. We shall
assume, going forward, that 0, refers to an embodiment of Quicksort = Q that is expressed in the
modern functional programming language known as Clojure.!?

3.2 Exemplar 2, an Inference Schema: Modus Tollens

Next, we use a variant of the famous “Wason Selection Task” (WST) (Wason 1966) to anchor our
presentation of modus tollens = MT, the gist of which, intuitively, can be thought of as the kernel
of a kind of disconfirmation, in which if it is claimed that ¢ implies %, and one observes that
isn’t the case, one can safely infer that ¢ doesn’t hold either. We can be a bit clearer about what
modus tollens is by way of the following oft-used token of it:

=Y,
¢

The token written immediately above, w/hi\ch — following our “hat” technique explained and in-
troduced above — we shall denote by ‘MT1,” tells us that if we have two formulae of the form
indicated by the two expressions above the horizontal line (the first a conditional and the second
the negation of the consequent of that conditional), then the inference schema in question allows
us to infer what’s below the horizontal line, namely that the antecedent in the conditional can be
negated.

Now here’s our selection-task challenge: Imagine that, operating as a teacher of mathematics
trying to transition one of our students to proof (from mere calculation), we have a deck of cards,
each member of which has a digit from 1 to 9 inclusive on one side, and a majuscule Roman letter
A, B, ..., K on the other. From this deck, we deal onto a table in front of one of our students the
following four cards:

cl ¢2 3 c4

Now suppose that we inform the student that the following rule R is absolutely guaranteed with
respect to the entire deck, and hence specifically also for the four cards c1-c4 now lying in front of
the student: “Every card with a vowel on one side has an even positive integer on the other side.”
Next, we issue the student the following challenge:

C Does card4 have a vowel on its other side? Supply a proof to justify your answer.

What should the student do in order to succeed? It should be clear that the student should

answer in the negative, and provide a proof that makes use of modus tollens, such as in the following

sequence, which we trust will be readily understood by all our readers, after a bit of inspection:'3
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King-Ace 2

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in
the hand; or if there isn’t a king in the hand, then
there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise!?
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there is an ace; but not both of these if-then

statements are true.

What can you infer from this premise!?

There is an ace in the hand.
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King-Ace 2

Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in
the hand; or if there isn’t a king in the hand, then
there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise!?

NO!'—Fhere-is-anace-in-the-hand—NO!

In fact, what you can infer is that there isn’t an ace in the hand!



King-Ace Solved

Proposition: There is not an ace in the hand.

Proof: We know that at least one of the if-thens (i.e., at least one
of the conditionals) is false. So we have two cases to consider,
viz., that K => A is false, and that =K => A is false. Take first the first
case; accordingly, suppose that K => A is false. Then it follows that
K is true (since when a conditional is false, its antecedent holds but
its consequent doesn’t), and A is false. Now consider the second
case, which consists in 7K => A being false. Here, in a direct
parallel, we know =K and, once again, 7A. In both of our two cases,
which are exhaustive, there is no ace in the hand. The proposition
is established. QED
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Study the S-expression

Slate - king_ace_original.slt

Edit Formula:

Formula:

(and (or (if K A) (if (not K) A))
(not (and (if K A) (if (not K) A)))|

Justification: Name (optional):

Assume a Premise

cancel | (KIS

Premise. ((K = A) v (=K = A)) A =((K = A) A (-K = A))
{Premise} Assume v/
I~

E;& PCH X

[Reality. -A] [Illusion. A]

{Premise} {Premise}
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We need another rule of inference
to crack this problem ... ...

disjunction elimination



From ~ p. 54 in LAMA-BDLA

from each ¢;, then we may conclude . That is, if we can, for each ¢;, assume ¢;
and show that ¢ follows, then we may conclude y from the disjunction ¢, V...V @,
and the derivations of y. There is one more subtle point, however. In the days-of-
the-week example above, the conclusion that Susan has class on a weekday should
not be in the scope of both the assumptions that she has class on Monday and that
she has class on Tuesday; these assumptions are discharged. Disjunction elimination
discharges each assumption ¢; from the line of reasoning that corresponds to that

case.
[mv...vcpn} [ Y } [ Y 1
o {@11wl; {o.lel,

Vv elim

:
ror,
[gU...Ul',

The various I'; on the premises of disjunction elimination might make this rule
seem more complicated than it really is. Their presence makes it clear that the only
assumptions discharged from each line of reasoning is the assumption corresponding
to that particular case.

(2.25)
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Suppose that the following premise is true:

If there is a king in the hand, then there is an ace in
the hand; or if there isn’t a king in the hand, then
there is an ace; but not both of these if-then
statements are true.

What can you infer from this premise!?
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In fact, what you can infer is that there isn’t an ace in the hand!
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Future Required problem (on
HyperGrader®): You will need to
finish the proof in HyperSlate® —
with no remaining use of an oracle.
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Further hands-on

Interaction In
Part |l of Class?



